List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4234535/publications.pdf Version: 2024-02-01

Δομοκ Ρλτει

#	Article	IF	CITATIONS
1	Crystallization of polymethoxyflavones in high internal phase emulsions stabilized using biopolymeric complexes: Implications for microstructure and in vitro digestion properties. Food Bioscience, 2021, 40, 100876.	2.0	3
2	Polysaccharide-based functional colloids for food applications. , 2021, , 187-229.		2
3	Functional and Engineered Colloids from Edible Materials for Emerging Applications in Designing the Food of the Future. Advanced Functional Materials, 2020, 30, 1806809.	7.8	87
4	Advances in our understanding of the structure and functionality of edible fats and fat mimetics. Soft Matter, 2020, 16, 289-306.	1.2	87
5	Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products. Current Opinion in Food Science, 2020, 33, 61-68.	4.1	120
6	Improved bioaccessibility of polymethoxyflavones loaded into high internal phase emulsions stabilized by biopolymeric complexes: A dynamic digestion study via TNO's gastrointestinal model. Current Research in Food Science, 2020, 2, 11-19.	2.7	25
7	Effect of low-methoxy pectin on interfacial and emulsion stabilizing properties of heated whey protein isolate (WPI) aggregates. Food Structure, 2020, 26, 100159.	2.3	13
8	Biopolymer-based oleocolloids. , 2020, , 587-604.		0
9	Oil Structuring in Dairy Fat Products. , 2020, , 307-325.		1
10	Oleogelation for Food Structuring Based on Synergistic Interactions Among Food Components. , 2019, , 715-718.		9
11	Nanostructures: Facile and Efficient Construction of Waterâ€Soluble Biomaterials with Tunable Mesoscopic Structures Using Allâ€Natural Edible Proteins (Adv. Funct. Mater. 31/2019). Advanced Functional Materials, 2019, 29, 1970216.	7.8	10
12	Whey protein isolate–low methoxyl pectin nanocomplexes improve physicochemical and stability properties of quercetin in a model fat-free beverage. Food and Function, 2019, 10, 986-996.	2.1	25
13	pH and protein to polysaccharide ratio control the structural properties and viscoelastic network of HIPE-templated biopolymeric oleogels. Food Structure, 2019, 21, 100112.	2.3	60
14	Facile and Efficient Construction of Waterâ€Soluble Biomaterials with Tunable Mesoscopic Structures Using Allâ€Natural Edible Proteins. Advanced Functional Materials, 2019, 29, 1901830.	7.8	31
15	Structuring Edible Oils with Hydrocolloids: Where Do we Stand?. Food Biophysics, 2018, 13, 113-115.	1.4	44
16	High internal phase emulsion (HIPE)-templated biopolymeric oleofilms containing an ultra-high concentration of edible liquid oil. Food and Function, 2018, 9, 1993-1997.	2.1	24
17	Colloidal particles for the delivery of steroid glycosides. Food and Function, 2018, 9, 485-490.	2.1	3

#	Article	IF	CITATIONS
19	Edible Foams Stabilized by Food-Grade Polymers. , 2018, , 251-269.		4
20	A colloidal gel perspective for understanding oleogelation. Current Opinion in Food Science, 2017, 15, 1-7.	4.1	71
21	Edible "Oleocolloidsâ€: The Final Frontier in Food Innovation?. Journal of Agricultural and Food Chemistry, 2017, 65, 3432-3433.	2.4	12
22	Methylcellulose-coated microcapsules of Palm stearine as structuring templates for creating hybrid oleogels. Materials Chemistry and Physics, 2017, 195, 268-274.	2.0	22
23	Surfactant-free oil-in-water-in-oil emulsions stabilized solely by natural components-biopolymers and vegetable fat crystals. MRS Advances, 2017, 2, 1095-1102.	0.5	12
24	Colloidal emulsion based delivery systems for steroid glycosides. Journal of Functional Foods, 2017, 28, 90-95.	1.6	12
25	Functional colloids from proteins and polysaccharides for food applications. Trends in Food Science and Technology, 2017, 68, 56-69.	7.8	186
26	Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Research International, 2017, 100, 832-840.	2.9	73
27	Cold-set gelation of whey protein isolate and low-methoxyl pectin at low pH. Food Hydrocolloids, 2017, 65, 35-45.	5.6	56
28	Emulsion-templated liquid oil structuring with soy protein and soy protein: κ-carrageenan complexes. Food Hydrocolloids, 2017, 65, 107-120.	5.6	156
29	Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chemistry, 2017, 214, 717-725.	4.2	173
30	High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: effect of pH and polymer concentration. Food and Function, 2017, 8, 584-594.	2.1	147
31	Oil structuring properties of monoglycerides and phytosterols mixtures. European Journal of Lipid Science and Technology, 2017, 119, 1500517.	1.0	71
32	Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. Journal of Colloid and Interface Science, 2017, 504, 387-396.	5.0	50
33	CHAPTER 1. Oil Structuring: Concepts, Overview and Future Perspectives. Food Chemistry, Function and Analysis, 2017, , 1-22.	0.1	6
34	CHAPTER 9. Oleogels from Emulsion (HIPE) Templates Stabilized by Protein–Polysaccharide Complexes. Food Chemistry, Function and Analysis, 2017, , 175-197.	0.1	4
35	Are edible oleocolloids the final frontier in food innovation?. Inform, 2017, 28, 30-32.	0.1	3
36	The Contribution of Modern Margarine and Fat Spreads to Dietary Fat Intake. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 633-645.	5.9	16

#	Article	IF	CITATIONS
37	The feasibility of waxâ€based oleogel as a potential coâ€structurant with palm oil in lowâ€saturated fat confectionery fillings. European Journal of Lipid Science and Technology, 2016, 118, 1903-1914.	1.0	77
38	Food-grade particles for emulsion stabilization. Trends in Food Science and Technology, 2016, 50, 159-174.	7.8	288
39	Edible oil structuring: an overview and recent updates. Food and Function, 2016, 7, 20-29.	2.1	315
40	Understanding the oil-gelling properties of natural waxes. Inform, 2016, , 17-20.	0.1	2
41	Alternative Routes to Oil Structuring. SpringerBriefs in Food, Health and Nutrition, 2015, , .	0.5	51
42	Natural Waxes as Oil Structurants. SpringerBriefs in Food, Health and Nutrition, 2015, , 15-27.	0.5	12
43	Rheological Profiling of Organogels Prepared at Critical Gelling Concentrations of Natural Waxes in a Triacylglycerol Solvent. Journal of Agricultural and Food Chemistry, 2015, 63, 4862-4869.	2.4	155
44	Potential Food Applications of Oleogels. SpringerBriefs in Food, Health and Nutrition, 2015, , 51-62.	0.5	2
45	CLAâ€Rich Soy Oil Shortening Production and Characterization. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1267-1275.	0.8	4
46	CLAâ€Rich Chocolate Bar and Chocolate Paste Production and Characterization. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1633-1642.	0.8	10
47	Rheological characterization of gel-in-oil-in-gel type structured emulsions. Food Hydrocolloids, 2015, 46, 84-92.	5.6	65
48	Biopolymer-Based Structuring of Liquid Oil into Soft Solids and Oleogels Using Water-Continuous Emulsions as Templates. Langmuir, 2015, 31, 2065-2073.	1.6	156
49	Fumed silica-based organogels and â€~aqueous-organic' bigels. RSC Advances, 2015, 5, 9703-9708.	1.7	79
50	Current update on the influence of minor lipid components, shear and presence of interfaces on fat crystallization. Current Opinion in Food Science, 2015, 3, 65-70.	4.1	56
51	Evaluating the Oilâ€Gelling Properties of Natural Waxes in Rice Bran Oil: Rheological, Thermal, and Microstructural Study. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 801-811.	0.8	154
52	Lipid crystallization kinetics—roles of external factors influencing functionality of end products. Current Opinion in Food Science, 2015, 4, 32-38.	4.1	53
53	Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European Journal of Lipid Science and Technology, 2015, 117, 1772-1781.	1.0	153
54	Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food and Function, 2014, 5, 2833-2841.	2.1	170

#	Article	IF	CITATIONS
55	Polysaccharideâ€Based Oleogels Prepared with an Emulsionâ€Templated Approach. ChemPhysChem, 2014, 15, 3435-3439.	1.0	102
56	CLAâ€Rich Soy Oil Margarine Production and Characterization. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 309-316.	0.8	7
57	High internal phase emulsion gels (HIPE-gels) prepared using food-grade components. RSC Advances, 2014, 4, 18136-18140.	1.7	71
58	Allâ€Natural Oilâ€Filled Microcapsules from Waterâ€Insoluble Proteins. Advanced Functional Materials, 2014, 24, 5962-5968.	7.8	38
59	Zein as a source of functional colloidal nano- and microstructures. Current Opinion in Colloid and Interface Science, 2014, 19, 450-458.	3.4	220
60	Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food and Function, 2014, 5, 645-652.	2.1	204
61	Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Advances, 2013, 3, 5324.	1.7	83
62	Colloidal complexation of a macromolecule with a small molecular weight natural polyphenol: implications in modulating polymer functionalities. Soft Matter, 2013, 9, 1428-1436.	1.2	87
63	A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances, 2013, 3, 22900-22903.	1.7	118
64	Fabrication and characterization of emulsions with pH responsive switchable behavior. Soft Matter, 2013, 9, 6747.	1.2	36
65	Novel Lowâ€Molecularâ€Weightâ€Gelatorâ€Based Microcapsules with Controllable Morphology and Temperature Responsiveness. ChemPhysChem, 2013, 14, 305-310.	1.0	16
66	Microcapsules: Novel Allâ€Natural Microcapsules from Gelatin and Shellac for Biorelated Applications (Adv. Funct. Mater. 37/2013). Advanced Functional Materials, 2013, 23, 4642-4642.	7.8	37
67	Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 2013, 411, 114-121.	5.0	143
68	Novel Allâ€Natural Microcapsules from Gelatin and Shellac for Biorelated Applications. Advanced Functional Materials, 2013, 23, 4710-4718.	7.8	16
69	Colloidal approach to prepare colour blends from colourants with different solubility profiles. Food Chemistry, 2013, 141, 1466-1471.	4.2	45
70	Temperature responsive colloidal particles from non-covalently interacting small molecular weight natural bioactive molecules. Soft Matter, 2012, 8, 3515.	1.2	15
71	Stable and Temperatureâ€Responsive Surfactantâ€Free Foamulsions with High Oilâ€Volume Fraction. ChemPhysChem, 2012, 13, 3777-3781.	1.0	30
72	Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chemistry, 2012, 133, 423-429.	4.2	183

#	Article	IF	CITATIONS
73	Straightforward preparation of organic colloidal particles by harnessing spontaneous non-covalent interactions of active molecules from natural origin. Journal of Colloid and Interface Science, 2012, 374, 150-156.	5.0	21
74	Stabilisation and controlled release of silibinin from pH responsive shellac colloidal particles. Soft Matter, 2011, 7, 8549.	1.2	59
75	Novel polymer–polyphenol beads for encapsulation and microreactor applications. Soft Matter, 2011, 7, 4294.	1.2	32
76	Colloidal delivery systems in foods: A general comparison with oral drug delivery. LWT - Food Science and Technology, 2011, 44, 1958-1964.	2.5	134
77	Colloidal complexes from associated water soluble cellulose derivative (methylcellulose) and green tea polyphenol (Epigallocatechin gallate). Journal of Colloid and Interface Science, 2011, 364, 317-323.	5.0	53
78	Evaluation of Synthesized Cross Linked Polyvinyl Alcohol as Potential Disintegrant. Journal of Pharmacy and Pharmaceutical Sciences, 2010, 13, 114.	0.9	25
79	Sodium Caseinate Stabilized Zein Colloidal Particles. Journal of Agricultural and Food Chemistry, 2010, 58, 12497-12503.	2.4	290
80	Synthesis and characterisation of zein–curcumin colloidal particles. Soft Matter, 2010, 6, 6192.	1.2	418
81	Preparation and Evaluation of Taste Masked Famotidine Formulation Using Drug/β-cyclodextrin/Polymer Ternary Complexation Approach. AAPS PharmSciTech, 2008, 9, 544-550.	1.5	81
82	Evaluation of SLS: APG Mixed Surfactant Systems as Carrier for Solid Dispersion. AAPS PharmSciTech, 2008, 9, 583-590.	1.5	26
83	Evaluation of alkyl polyglucoside as an alternative surfactant in the preparation of peptide-loaded nanoparticles. Journal of Microencapsulation, 2008, 25, 531-540.	1.2	23
84	Preparation and in vivo evaluation of SMEDDS (self-microemulsifying drug delivery system) containing fenofibrate. AAPS Journal, 2007, 9, E344-E352.	2.2	191
85	Effect of Hydrophilic Polymer on Solubilization of Fenofibrate by Cyclodextrin Complexation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 247-251.	1.6	37
86	Interaction of Valdecoxib with β-cyclodextrin: Experimental and Molecular Modeling Studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 261-273.	1.6	10