

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233875/publications.pdf Version: 2024-02-01

CANC WE

#	Article	IF	CITATIONS
1	Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chemical Society Reviews, 2017, 46, 4661-4708.	38.1	670
2	Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polymer Chemistry, 2015, 6, 6107-6124.	3.9	237
3	Recent advances in the design of colorimetric sensors for environmental monitoring. Environmental Science: Nano, 2020, 7, 2195-2213.	4.3	206
4	Synthesis and sensor applications of MoS ₂ -based nanocomposites. Nanoscale, 2015, 7, 18364-18378.	5.6	202
5	Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. Journal of Materials Chemistry B, 2015, 3, 2487-2496.	5.8	195
6	When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale, 2016, 8, 19491-19509.	5.6	194
7	Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Materials Science and Engineering C, 2019, 104, 109891.	7.3	179
8	Electrospinning design of functional nanostructures for biosensor applications. Journal of Materials Chemistry B, 2017, 5, 1699-1711.	5.8	156
9	Electrospinning: a facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Advances, 2014, 4, 52598-52610.	3.6	154
10	Technical synthesis and biomedical applications of graphene quantum dots. Journal of Materials Chemistry B, 2017, 5, 4811-4826.	5.8	151
11	Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Progress in Polymer Science, 2018, 80, 94-124.	24.7	145
12	Recent Advances in Nanoporous Membranes for Water Purification. Nanomaterials, 2018, 8, 65.	4.1	136
13	Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review. Chemical Engineering Journal, 2020, 402, 126189.	12.7	136
14	Nanoscale Graphene Doped with Highly Dispersed Silver Nanoparticles: Quick Synthesis, Facile Fabrication of 3D Membraneâ€Modified Electrode, and Super Performance for Electrochemical Sensing. Advanced Functional Materials, 2016, 26, 2122-2134.	14.9	135
15	Designed graphene-peptide nanocomposites for biosensor applications: A review. Analytica Chimica Acta, 2017, 985, 24-40.	5.4	133
16	Motifâ€Designed Peptide Nanofibers Decorated with Graphene Quantum Dots for Simultaneous Targeting and Imaging of Tumor Cells. Advanced Functional Materials, 2015, 25, 5472-5478.	14.9	128
17	2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horizons, 2018, 3, 74-89.	8.0	126
18	Hierarchical nanomaterials <i>via</i> biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale, 2019, 11, 4147-4182.	5.6	122

#	Article	IF	CITATIONS
19	Electrostatic Assembly of Peptide Nanofiber–Biomimetic Silver Nanowires onto Graphene for Electrochemical Sensors. ACS Macro Letters, 2014, 3, 529-533.	4.8	117
20	Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes. Nanoscale, 2015, 7, 5080-5093.	5.6	116
21	Self-assembled peptide nanofibers on graphene oxide as a novel nanohybrid for biomimetic mineralization of hydroxyapatite. Carbon, 2015, 89, 20-30.	10.3	116
22	One-Step Synthesis of Silver Nanoparticles, Nanorods, and Nanowires on the Surface of DNA Network. Journal of Physical Chemistry B, 2005, 109, 8738-8743.	2.6	113
23	Electrospun Doping of Carbon Nanotubes and Platinum Nanoparticles into the β-Phase Polyvinylidene Difluoride Nanofibrous Membrane for Biosensor and Catalysis Applications. ACS Applied Materials & Interfaces, 2014, 6, 7563-7571.	8.0	112
24	One-pot green synthesis, characterizations, and biosensor application of self-assembled reduced graphene oxide–gold nanoparticle hybrid membranes. Journal of Materials Chemistry B, 2013, 1, 6525.	5.8	111
25	The Combination of Two-Dimensional Nanomaterials with Metal Oxide Nanoparticles for Gas Sensors: A Review. Nanomaterials, 2022, 12, 982.	4.1	111
26	The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chemical Society Reviews, 2019, 48, 5564-5595.	38.1	110
27	Synthesis of Palladium Nanoparticles and Their Applications for Surface-Enhanced Raman Scattering and Electrocatalysis. Journal of Physical Chemistry C, 2010, 114, 21976-21981.	3.1	109
28	Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Advances, 2015, 5, 22935-22942.	3.6	109
29	Fabrication, characterization and sensor application of electrospun polyurethane nanofibers filled with carbon nanotubes and silver nanoparticles. Journal of Materials Chemistry B, 2013, 1, 2415.	5.8	107
30	MoS ₂ nanosheets decorated with gold nanoparticles for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 14562-14566.	10.3	107
31	Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. Nanomaterials, 2019, 9, 1045.	4.1	103
32	Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. Biosensors, 2022, 12, 314.	4.7	103
33	Supramolecular Self-Assembly Bioinspired Synthesis of Luminescent Gold Nanocluster-Embedded Peptide Nanofibers for Temperature Sensing and Cellular Imaging. Bioconjugate Chemistry, 2017, 28, 2224-2229.	3.6	101
34	Controlling the Self-Assembly of Biomolecules into Functional Nanomaterials through Internal Interactions and External Stimulations: A Review. Nanomaterials, 2019, 9, 285.	4.1	99
35	One-Step Synthesis of Large-Scale Graphene Film Doped with Gold Nanoparticles at Liquid–Air Interface for Electrochemistry and Raman Detection Applications. Langmuir, 2014, 30, 8980-8989.	3.5	97
36	Interactive Oxidation–Reduction Reaction for the in Situ Synthesis of Graphene–Phenol Formaldehyde Composites with Enhanced Properties. ACS Applied Materials & Interfaces, 2014, 6, 4254-4263.	8.0	95

#	Article	IF	CITATIONS
37	A facile fabrication of large-scale reduced graphene oxide–silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. Journal of Materials Chemistry C, 2015, 3, 4126-4133.	5.5	91
38	DNA-Network-Templated Self-Assembly of Silver Nanoparticles and Their Application in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry B, 2005, 109, 23941-23947.	2.6	90
39	Graphene Foams for Electromagnetic Interference Shielding: A Review. ACS Applied Nano Materials, 2020, 3, 6140-6155.	5.0	87
40	Graphene-based aptasensors: from molecule–interface interactions to sensor design and biomedical diagnostics. Analyst, The, 2018, 143, 1526-1543.	3.5	82
41	Cuprous oxide microspheres on graphene nanosheets: an enhanced material for non-enzymatic electrochemical detection of H ₂ O ₂ and glucose. RSC Advances, 2015, 5, 35338-35345.	3.6	79
42	Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors, 2021, 11, 259.	4.7	78
43	Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications. Materials Advances, 2020, 1, 2163-2181.	5.4	77
44	Graphene film doped with silver nanoparticles: self-assembly formation, structural characterizations, antibacterial ability, and biocompatibility. Biomaterials Science, 2015, 3, 852-860.	5.4	75
45	Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Progress in Materials Science, 2022, 125, 100915.	32.8	73
46	Alternate layer-by-layer assembly of graphene oxide nanosheets and fibrinogen nanofibers on a silicon substrate for a biomimetic three-dimensional hydroxyapatite scaffold. Journal of Materials Chemistry B, 2014, 2, 7360-7368.	5.8	72
47	Thermo-sensitive graphene oxide–polymer nanoparticle hybrids: synthesis, characterization, biocompatibility and drug delivery. Journal of Materials Chemistry B, 2014, 2, 1362.	5.8	71
48	Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft Matter, 2020, 16, 10029-10045.	2.7	71
49	Novel Biopolymeric Template for the Nucleation and Growth of Hydroxyapatite Crystals Based on Self-Assembled Fibrinogen Fibrils. Biomacromolecules, 2008, 9, 3258-3267.	5.4	70
50	Responsive Hybrid Polymeric/Metallic Nanoparticles for Catalytic Applications. Macromolecular Materials and Engineering, 2010, 295, 1049-1057.	3.6	70
51	Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. Journal of Materials Chemistry B, 2020, 8, 10065-10086.	5.8	69
52	Biomimetic graphene–FePt nanohybrids with high solubility, ferromagnetism, fluorescence, and enhanced electrocatalytic activity. Journal of Materials Chemistry, 2012, 22, 17190.	6.7	66
53	Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid. Microscopy Research and Technique, 2005, 66, 179-185.	2.2	65
54	Biomimetic Ultralight, Highly Porous, Shapeâ€Adjustable, and Biocompatible 3D Graphene Minerals via Incorporation of Selfâ€Assembled Peptide Nanosheets. Advanced Functional Materials, 2018, 28, 1801056.	14.9	65

#	Article	IF	CITATIONS
55	Synthesis of Three-Dimensional Graphene-Based Hybrid Materials for Water Purification: A Review. Nanomaterials, 2019, 9, 1123.	4.1	65
56	Sequenceâ€Designed Peptide Nanofibers Bridged Conjugation of Graphene Quantum Dots with Graphene Oxide for High Performance Electrochemical Hydrogen Peroxide Biosensor. Advanced Materials Interfaces, 2017, 4, 1600895.	3.7	64
57	Chain conformation, crystallization behavior, electrical and mechanical properties of electrospun polymer-carbon nanotube hybrid nanofibers with different orientations. Carbon, 2012, 50, 5605-5617.	10.3	63
58	Recent Advances in the Synthesis of Graphene-Based Nanomaterials for Controlled Drug Delivery. Applied Sciences (Switzerland), 2017, 7, 1175.	2.5	63
59	Metal-organic frameworks functionalized with nucleic acids and amino acids for structure- and function-specific applications: A tutorial review. Chemical Engineering Journal, 2022, 428, 131118.	12.7	63
60	Biomimetic growth of hydroxyapatite on super water-soluble carbon nanotube-protein hybrid nanofibers. Carbon, 2011, 49, 2216-2226.	10.3	59
61	Design, fabrication, and biomedical applications of bioinspired peptide–inorganic nanomaterial hybrids. Journal of Materials Chemistry B, 2017, 5, 1130-1142.	5.8	59
62	Porous two-dimensional materials for energy applications: Innovations and challenges. Materials Today Energy, 2017, 6, 79-95.	4.7	59
63	Gold nanocluster embedded bovine serum albumin nanofibers-graphene hybrid membranes for the efficient detection and separation of mercury ion. Chemical Engineering Journal, 2018, 335, 176-184.	12.7	59
64	Protein-Promoted Synthesis of Pt Nanoparticles on Carbon Nanotubes for Electrocatalytic Nanohybrids with Enhanced Glucose Sensing. Journal of Physical Chemistry C, 2011, 115, 11453-11460.	3.1	57
65	AFM-based force spectroscopy for bioimaging and biosensing. RSC Advances, 2016, 6, 12893-12912.	3.6	56
66	Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydrate Polymers, 2022, 279, 118947.	10.2	55
67	Type I Collagen-Mediated Synthesis and Assembly of UV-Photoreduced Cold Nanoparticles and Their Application in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2007, 111, 1976-1982.	3.1	53
68	Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2. Nanomaterials, 2015, 5, 1891-1905.	4.1	53
69	Fast preparation of MoS ₂ nanoflowers decorated with platinum nanoparticles for electrochemical detection of hydrogen peroxide. RSC Advances, 2016, 6, 52739-52745.	3.6	53
70	Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing. Analyst, The, 2018, 143, 5074-5089.	3.5	50
71	Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG Asia Materials, 2018, 10, 429-440.	7.9	50
72	Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures. Materials, 2016, 9, 53.	2.9	49

#	Article	lF	CITATIONS
73	Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Materials Today Chemistry, 2018, 7, 76-83.	3.5	48
74	Electrospinning Nanoparticles-Based Materials Interfaces for Sensor Applications. Sensors, 2019, 19, 3977.	3.8	48
75	Controlled assembly of protein-protected gold nanoparticles on noncovalent functionalized carbon nanotubes. Carbon, 2010, 48, 645-653.	10.3	47
76	A Novel Strategy to Construct a Flat-Lying DNA Monolayer on a Mica Surface. Journal of Physical Chemistry B, 2006, 110, 10792-10798.	2.6	45
77	Surface-bioengineered Gold Nanoparticles for Biomedical Applications. Current Medicinal Chemistry, 2018, 25, 1920-1944.	2.4	44
78	A simple method for the preparation of ultrahigh sensitivity surface enhanced Raman scattering (SERS) active substrate. Applied Surface Science, 2005, 240, 260-267.	6.1	43
79	Recent Advances in the Cancer Bioimaging with Graphene Quantum Dots. Current Medicinal Chemistry, 2018, 25, 2876-2893.	2.4	43
80	Photochemical synthesis and self-assembly of gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312, 148-153.	4.7	41
81	Biomimetic 3D hydroxyapatite architectures with interconnected pores based on electrospun biaxially orientated PCL nanofibers. RSC Advances, 2014, 4, 14833-14839.	3.6	41
82	Electrostatic assembly of CTAB-capped silver nanoparticles along predefined λ-DNA template. Applied Surface Science, 2005, 252, 1189-1196.	6.1	39
83	Electrostatic assembly of Cu2O nanoparticles on DNA templates. Applied Surface Science, 2006, 252, 2711-2716.	6.1	39
84	Fabrication, Properties, Performances, and Separation Application of Polymeric Pervaporation Membranes: A Review. Polymers, 2020, 12, 1466.	4.5	39
85	Manipulation, dissection, and lithography using modified tapping mode atomic force microscope. Microscopy Research and Technique, 2006, 69, 998-1004.	2.2	38
86	A novel photochromic multilayer based on preyssler's clusterElectronic supplementary information (ESI) available: ESR spectrum of the NaP5W30/PEI sample after irradiation. See http://www.rsc.org/suppdata/nj/b3/b305578g/. New Journal of Chemistry, 2003, 27, 1291.	2.8	36
87	Photochromic inorganic–organic multilayer films based on polyoxometalates and poly(ethylenimine). Journal of Colloid and Interface Science, 2004, 275, 596-600.	9.4	36
88	Immobilization and condensation of DNA with 3-aminopropyltriethoxysilane studied by atomic force microscopy. Journal of Microscopy, 2005, 218, 233-239.	1.8	36
89	Synthesis, characterization and drug release application of carbon nanotube-polymer nanosphere composites. RSC Advances, 2013, 3, 9304.	3.6	36
90	Fabrication of polypyrrole nanoplates decorated with silver and gold nanoparticles for sensor applications. RSC Advances, 2015, 5, 69745-69752.	3.6	36

#	Article	IF	CITATIONS
91	Solution-phase synthesis of Au@ZnO core-shell composites. Materials Letters, 2006, 60, 1291-1295.	2.6	35
92	Controlled self-assembly and templated metallization of fibrinogen nanofibrils. Chemical Communications, 2008, , 3903.	4.1	35
93	Protein Handshake on the Nanoscale: How Albumin and Hemoglobin Self-Assemble into Nanohybrid Fibers. ACS Nano, 2018, 12, 1211-1219.	14.6	34
94	Recent Advance in the Fabrication of 2D and 3D Metal Carbides-Based Nanomaterials for Energy and Environmental Applications. Nanomaterials, 2021, 11, 246.	4.1	34
95	Self-assembly of λ-DNA networks/Ag nanoparticles: Hybrid architecture and active-SERS substrate. Journal of Colloid and Interface Science, 2008, 317, 183-190.	9.4	33
96	Electrochemical sensor based on novel two-dimensional nanohybrids: MoS ₂ nanosheets conjugated with organic copper nanowires for simultaneous detection of hydrogen peroxide and ascorbic acid. Inorganic Chemistry Frontiers, 2018, 5, 112-119.	6.0	33
97	Self-assembly of cinnamic acid-capped gold nanoparticles. Nanotechnology, 2006, 17, 2907-2912.	2.6	32
98	Biomimetic Hydroxyapatite on Graphene Supports for Biomedical Applications: A Review. Nanomaterials, 2019, 9, 1435.	4.1	31
99	Peptideâ€Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small, 2021, 17, e2005578.	10.0	31
100	Estimation of the free energy of adsorption of a polypeptide on amorphous SiO ₂ from molecular dynamics simulations and force spectroscopy experiments. Soft Matter, 2015, 11, 6254-6265.	2.7	30
101	Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. Journal of Nanobiotechnology, 2021, 19, 253.	9.1	30
102	Two-dimensional material-based functional aerogels for treating hazards in the environment: synthesis, functional tailoring, applications, and sustainability analysis. Nanoscale Horizons, 2022, 7, 112-140.	8.0	30
103	A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions. Analyst, The, 2015, 140, 5243-5250.	3.5	29
104	Biomineralization of ZrO2 nanoparticles on graphene oxide-supported peptide/cellulose binary nanofibrous membranes for high-performance removal of fluoride ions. Chemical Engineering Journal, 2022, 430, 132721.	12.7	28
105	Type I collagen-templated assembly of silver nanoparticles and their application in surface-enhanced Raman scattering. Nanotechnology, 2008, 19, 115604.	2.6	27
106	Recent Advances in the Construction of Flexible Sensors for Biomedical Applications. Biotechnology Journal, 2020, 15, e2000094.	3.5	27
107	On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. Nanoscale, 2021, 13, 4330-4358.	5.6	24
108	Direct force measurements on peeling heteropolymer ssDNA from a graphite surface using single-molecule force spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 3995.	2.8	23

#	Article	IF	CITATIONS
109	Removing Metal Ions from Water with Graphene–Bovine Serum Albumin Hybrid Membrane. Nanomaterials, 2019, 9, 276.	4.1	23
110	Green synthesis and fabrication of an electrochemical and colorimetric sensor based on self-assembled peptide-Au nanofibril architecture. Arabian Journal of Chemistry, 2020, 13, 1406-1414.	4.9	23
111	Fabrication of silver nanoparticles ring templated by plasmid DNA. Applied Surface Science, 2006, 252, 4969-4974.	6.1	22
112	Adsorption of DNA Fragments at Aqueous Graphite and Au(111) via Integration of Experiment and Simulation. Langmuir, 2017, 33, 10193-10204.	3.5	22
113	Effects of Bridge Ions, DNA Species, and Developing Temperature on Flat-Lying DNA Monolayers. Journal of Physical Chemistry B, 2007, 111, 461-468.	2.6	20
114	Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. Nanotechnology, 2021, 32, 442001.	2.6	20
115	Observation of the mica surface by atomic force microscopy. Micron, 2005, 36, 525-531.	2.2	19
116	Label-free biosensing with single-molecule force spectroscopy. Chemical Communications, 2013, 49, 3239.	4.1	19
117	Reduced Graphene Oxide-Based Double Network Polymeric Hydrogels for Pressure and Temperature Sensing. Sensors, 2018, 18, 3162.	3.8	19
118	Polyurethane-Supported Graphene Oxide Foam Functionalized with Carbon Dots and TiO2 Particles for Photocatalytic Degradation of Dyes. Applied Sciences (Switzerland), 2019, 9, 293.	2.5	19
119	Electrostatic Assembly of Platinum Nanoparticles along Electrospun Polymeric Nanofibers for High Performance Electrochemical Sensors. Nanomaterials, 2017, 7, 236.	4.1	18
120	When MoS ₂ meets TiO ₂ : facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications. Journal of Materials Chemistry C, 2021, 9, 8466-8482.	5.5	18
121	Direct patterning of rhodamine 6G molecules on mica by dip-pen nanolithography. Applied Surface Science, 2004, 236, 18-24.	6.1	17
122	Enzyme-mediated reversible deactivation radical polymerization for functional materials: principles, synthesis, and applications. Polymer Chemistry, 2020, 11, 1673-1690.	3.9	17
123	Immobilization of DNA on 11-mercaptoundecanoic acid-modified gold (111) surface for atomic force microscopy imaging. Microscopy Research and Technique, 2005, 68, 59-64.	2.2	15
124	Novel 1-D biophotonic nanohybrids: protein nanofibers meet quantum dots. Soft Matter, 2011, 7, 2011.	2.7	15
125	Optimal hydrothermal synthesis, characterization, and sensor application of sulfur-doped Î ³ -MnOOH microrods. RSC Advances, 2015, 5, 80719-80727.	3.6	15
126	Ultrasmooth Ru(0001) Films as Templates for Ceria Nanoarchitectures. Crystal Growth and Design, 2016, 16, 4216-4224.	3.0	15

#	Article	IF	CITATIONS
127	Thermosensitive polymeric micelles based on the triblock copolymer poly(<scp>d,l</scp> â€lactide)â€ <i>b</i> â€poly(<i>N</i> â€lsopropyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf	50,742 Td	l (acrylamide
128	Polymer Science, 2017, 134, 45304. Formation and Topotactical Orientation of Fibrinogen Nanofibrils on Graphite Nanostructures. Advanced Engineering Materials, 2009, 11, B177.	3.5	14
129	Facile synthesis of hierarchical Ti3C2@FeOOH nanocomposites for antimony contaminated wastewater treatment: Performance, mechanisms, reutilization, and sustainability. Chemical Engineering Journal, 2022, 450, 138038.	12.7	14
130	Label-Free Sensing of Adenosine Based on Force Variations Induced by Molecular Recognition. Biosensors, 2015, 5, 85-97.	4.7	13
131	Rapid Preparation of Crosslinked N-doped Graphene by Burning Method for High-Performance Electrochemical Capacitors. Electrochimica Acta, 2016, 192, 243-250.	5.2	12
132	Growth and structure of ultrathin praseodymium oxide layers on ruthenium(0001). Physical Chemistry Chemical Physics, 2017, 19, 3480-3485.	2.8	12
133	Electrostatic assembly of protein lysozyme on DNA visualized by atomic force microscopy. Applied Surface Science, 2007, 253, 4311-4316.	6.1	11
134	Simulated and experimental force spectroscopy of lysozyme on silica. Physical Chemistry Chemical Physics, 2018, 20, 19595-19605.	2.8	11
135	One-Pot, In-Situ Synthesis of 8-Armed Poly(Ethylene Glycol)-Coated Ag Nanoclusters as a Fluorescent Sensor for Selective Detection of Cu2+. Biosensors, 2020, 10, 131.	4.7	11
136	Recent Advances in the Fabrication and Environmental Science Applications of Cellulose Nanofibril-Based Functional Materials. Materials, 2021, 14, 5390.	2.9	10
137	Stimulus-responsive nanomaterials under physical regulation for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 9642-9657.	5.8	10
138	Graphene-Based Functional Hybrid Membranes for Antimicrobial Applications: A Review. Applied Sciences (Switzerland), 2022, 12, 4834.	2.5	10
139	Mechanically engraved mica surface using the atomic force microscope tip facilitates return to a specific sample location. Microscopy Research and Technique, 2005, 66, 156-162.	2.2	9
140	Collagen Nanofiber-templated Silver Nanowires on Graphene Nanosheets for a Nonenzymatic Amperometric Biosensor of Hydrogen Peroxide. Chemistry Letters, 2014, 43, 544-546.	1.3	9
141	Large-scale, Uniform DNA Network on 11-mercaptoundecanoic Acid Modified Gold (111) Surface: Atomic Force Microscopy Study. Microscopy Research and Technique, 2007, 70, 572-577.	2.2	8
142	Label-free determination of adenosine and mercury ions according to force mapping-based force-to-color variety. Analyst, The, 2018, 143, 4400-4407.	3.5	8
143	Adamantane-Modified Graphene Oxide for Cyanate Ester Resin Composites with Improved Properties. Applied Sciences (Switzerland), 2019, 9, 881.	2.5	8
144	Facile synthesis of tri(octyl-decyl) amine-modified biomass carbonaceous aerogel for rapid adsorption and removal of iodine ions. Chemical Engineering Research and Design, 2019, 144, 228-236.	5.6	8

Gang Wei

#	Article	IF	CITATIONS
145	Controlled Organization of Silver Nanoparticles into Network Assemblies by Tuning pH Values. Chemistry Letters, 2007, 36, 610-611.	1.3	7
146	A highly effective reactive liquid crystal for the improved βâ€nucleation of isotactic polypropylene. Polymer Engineering and Science, 2014, 54, 2112-2120.	3.1	7
147	Irreversible Damage of Polymer Membranes During Attenuated Total Reflection Infrared Analysis. Applied Spectroscopy, 2017, 71, 1127-1133.	2.2	7
148	One-step hydrothermal synthesis, characterization, and electrochemical sensor application of ternary Mn-Mo-O hybrid materials. Sensors and Actuators B: Chemical, 2016, 236, 450-458.	7.8	6
149	Single-molecule force spectroscopy: A facile technique for studying the interactions between biomolecules and materials interfaces. Reviews in Analytical Chemistry, 2020, 39, 116-129.	3.2	6
150	Bio-interfactants as double-sided tapes for graphene oxide. Nanoscale, 2019, 11, 4236-4247.	5.6	5
151	Force spectroscopic detection of peptide cleavage by thrombin exploiting biotin–streptavidin interactions in a bio-sensing context. Analytical Methods, 2019, 11, 1102-1110.	2.7	5
152	Self-assembled Gold Nanoparticle Chains in Presence of Silver Ions. Chemistry Letters, 2007, 36, 142-143.	1.3	4
153	Facile Fabrication of a Low-Cost Alginate-Polyacrylamide Composite Aerogel for the Highly Efficient Removal of Lead Ions. Applied Sciences (Switzerland), 2019, 9, 4754.	2.5	4
154	Peptideâ€Induced Synthesis of Grapheneâ€5upported Au/Pt Bimetallic Nanoparticles for Electrochemical Biosensor Application. Macromolecular Materials and Engineering, 0, , 2100886.	3.6	4
155	Tailoring Peptide Self-Assembly and Formation of 2D Nanoribbons on Mica and HOPG Surface. Materials, 2022, 15, 310.	2.9	4
156	Motif-Tailoring Enriches the Biofunctions of Self-assembled Peptide Superstructures. Current Organic Chemistry, 2018, 22, 1947-1948.	1.6	3
157	Electrochemical Detection of Short DNA Sequences Related to the Escherichia coli Pathogen Using a Zirconia-Modified Screen-Printed DNA Biosensor. Australian Journal of Chemistry, 2008, 61, 962.	0.9	2
158	Self-assembly formation of peptide and protein nanofibers on surfaces and at interfaces. , 2020, , 23-39.		2
159	Biomimetic Organic-Inorganic Hybrid Membranes for Removal of Fluoride Ions. Materials, 2022, 15, 3457.	2.9	2
160	Characterization techniques of protein and peptide nanofibers: Self-assembly kinetics. , 2020, , 99-118.		1
161	Special Issue on "New Materials and Techniques for Environmental Science― Applied Sciences (Switzerland), 2019, 9, 3515.	2.5	0
162	Electrospun nanomaterials as biosensors in diagnostics and beyond. , 2021, , 157-182.		0