Ke Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233842/publications.pdf Version: 2024-02-01

KE WANC

#	Article	IF	CITATIONS
1	Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Progress in Polymer Science, 2012, 37, 1425-1455.	11.8	355
2	New Understanding in Tuning Toughness of β-Polypropylene: The Role of β-Nucleated Crystalline Morphology. Macromolecules, 2009, 42, 9325-9331.	2.2	274
3	Direct Formation of Nanohybrid Shish-Kebab in the Injection Molded Bar of Polyethylene/Multiwalled Carbon Nanotubes Composite. Macromolecules, 2009, 42, 7016-7023.	2.2	159
4	New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene. Polymer, 2011, 52, 2351-2360.	1.8	128
5	The interplay of thermodynamics and shear on the dispersion of polymer nanocomposite. Polymer, 2004, 45, 7953-7960.	1.8	97
6	Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Composites Science and Technology, 2014, 91, 22-29.	3.8	89
7	Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Composites Part A: Applied Science and Manufacturing, 2018, 112, 32-39.	3.8	84
8	Observation of Shear-Induced Hybrid Shish Kebab in the Injection Molded Bars of Linear Polyethylene Containing Inorganic Whiskers. Macromolecules, 2007, 40, 8533-8536.	2.2	82
9	Superior Reinforcement in Melt-Spun Polyethylene/Multiwalled Carbon Nanotube Fiber through Formation of a Shish-Kebab Structure. Journal of Physical Chemistry B, 2010, 114, 10693-10702.	1.2	79
10	The hierarchy structure and orientation of high density polyethylene obtained via dynamic packing injection molding. Polymer, 2006, 47, 6857-6867.	1.8	78
11	Dependence of mechanical properties on βâ€form content and crystalline morphology for βâ€nucleated isotactic polypropylene. Polymers for Advanced Technologies, 2011, 22, 2044-2054.	1.6	74
12	Facilitating transcrystallization of polypropylene/glass fiber composites by imposed shear during injection molding. Polymer, 2006, 47, 8374-8379.	1.8	73
13	Control of the hierarchical structure of polymer articles via "structuring―processing. Progress in Polymer Science, 2014, 39, 891-920.	11.8	71
14	Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding. Polymer, 2005, 46, 3190-3198.	1.8	66
15	Synergistic toughening of polypropylene random copolymer at low temperature: β-Modification and annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7052-7059.	2.6	63
16	Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend. Polymer, 2014, 55, 6409-6417.	1.8	61
17	Hierarchical structure of injection-molded bars of HDPE/MWCNTs composites with novel nanohybrid shish–kebab. Polymer, 2010, 51, 774-782.	1.8	55
18	Molecular Weight Dependence of Hybrid Shish Kebab Structure in Injection Molded Bar of Polyethylene/Inorganic Whisker Composites. Journal of Physical Chemistry B, 2008, 112, 14140-14148.	1.2	54

#	Article	IF	CITATIONS
19	Hierarchical structure and unique impact behavior of polypropylene/ethylene-octene copolymer blends as obtained via dynamic packing injection molding. Polymer, 2013, 54, 3392-3401.	1.8	51
20	A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends. Polymer, 2018, 154, 119-127.	1.8	47
21	Crystal morphology and tensile properties of LLDPE containing PP fibers as obtained via dynamic packing injection molding. Polymer, 2006, 47, 7115-7122.	1.8	45
22	Polypropylene Injection Molded Part with Novel Macroscopic Bamboo-like Bionic Structure. Journal of Physical Chemistry B, 2010, 114, 9994-10001.	1.2	44
23	Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). RSC Advances, 2013, 3, 26418.	1.7	44
24	Cooperative effect of shear and nanoclay on the formation of polar phase in poly(vinylidene fluoride) and the resultant properties. Polymer, 2011, 52, 4970-4978.	1.8	43
25	Exploring temperature dependence of the toughening behavior of β-nucleated impact polypropylene copolymer. Polymer, 2012, 53, 1783-1790.	1.8	42
26	Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2012, 107, 733-743.	2.0	41
27	Shear amplification and re-crystallization of isotactic polypropylene from an oriented melt in presence of oriented clay platelets. Polymer, 2005, 46, 9022-9032.	1.8	40
28	Interfacial enhancement by shish–calabash crystal structure in polypropylene/inorganic whisker composites. Polymer, 2009, 50, 3851-3856.	1.8	40
29	Epitaxy growth and directed crystallization of high-density polyethylene in the oriented blends with isotactic polypropylene. Polymer, 2005, 46, 5258-5267.	1.8	37
30	Transcrystalline formation and properties of polypropylene on the surface of ramie fiber as induced by shear or dopamine modification. Polymer, 2014, 55, 3045-3053.	1.8	37
31	Shear-induced epitaxial crystallization in injection-molded bars of high-density polyethylene/isotactic polypropylene blends. Polymer, 2007, 48, 4529-4536.	1.8	35
32	Shear enhanced interfacial interaction between carbon nanotubes and polyethylene and formation of nanohybrid shish–kebabs. Polymer, 2008, 49, 4925-4929.	1.8	35
33	Rheologically determined negative influence of increasing nucleating agent content on the crystallization of isotactic polypropylene. Polymer, 2009, 50, 696-706.	1.8	34
34	Interfacial enhancement of maleated polypropylene/silica composites using graphene oxide. Journal of Applied Polymer Science, 2012, 125, E348.	1.3	33
35	Inverse Temperature Dependence of Strain Hardening in Ultrahigh Molecular Weight Polyethylene:Â Role of Lamellar Coupling and Entanglement Density. Journal of Physical Chemistry B, 2007, 111, 13206-13210.	1.2	30
36	Enhancement of β-nucleated crystallization in polypropylene random copolymer via adding isotactic polypropylene. Polymer, 2012, 53, 4861-4870.	1.8	29

#	Article	IF	CITATIONS
37	Effect of whiskers nucleation ability and shearing function on the interfacial crystal morphology of polyethylene (PE)/raw whiskers composites. Composites Part B: Engineering, 2011, 42, 631-637.	5.9	28
38	Realizing the full nanofiller enhancement in melt-spun fibers of poly(vinylidene fluoride)/carbon nanotube composites. Nanotechnology, 2011, 22, 355707.	1.3	28
39	Facilely assess the soluble behaviour of the β-nucleating agent by gradient temperature field for the construction of heterogeneous crystalline-frameworks in iPP. Soft Matter, 2016, 12, 594-601.	1.2	25
40	An observation of accelerated exfoliation in iPP/organoclay nanocomposite as induced by repeated shear during melt solidification. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2005-2012.	2.4	24
41	Pursuit of the correlation between yield strength and crystallinity in sintering-molded UHMWPE. Polymer, 2021, 215, 123352.	1.8	24
42	Superior toughness obtained via tuning the compatibility of poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	542 Td (t	erephthalate) 23
43	Fabrication of polypropylene/carbon nanotubes composites via a sequential process of (rotating) Tj ETQq1 1 0.78	34314 rgB	T /Overlock] 20
44	Realizing mechanically reinforced all-polyethylene material by dispersing UHMWPE via high-speed shear extrusion. Polymer, 2019, 180, 121711.	1.8	20
45	The effect of filler permittivity on the dielectric properties of polymer-based composites. Composites Science and Technology, 2022, 222, 109342.	3.8	20
46	Enhanced interfacial adhesion via interfacial crystallization between sisal fiber and isotactic polypropylene: direct evidence from single-fiber fragmentation testing. Polymer International, 2014, 63, 646-651.	1.6	19
47	Orientation in high-density polyethylene/inorganic whisker composite fibers as studied via polarized Fourier transform infrared spectroscopy. Composites Science and Technology, 2010, 70, 685-691.	3.8	18
48	Oscillatory shear-accelerated exfoliation of graphite in polypropylene melt during injection molding. Chinese Journal of Polymer Science (English Edition), 2013, 31, 98-109.	2.0	18
49	Hydrogen-bond-dominated mechanical stretchability in PVA films: from phenomenological to numerical insights. Physical Chemistry Chemical Physics, 2022, 24, 1885-1895.	1.3	18
50	The effect of shear on mechanical properties and orientation of HDPE/mica composites obtained via dynamic packing injection molding (DPIM). Polymers for Advanced Technologies, 2010, 21, 48-54.	1.6	16
51	Effect of melting temperature on interfacial interaction and mechanical properties of polypropylene (PP) fiber reinforced olefin block copolymers (OBCs). RSC Advances, 2014, 4, 45234-45243.	1.7	16
52	Synergistic effects of βâ€modification and impact polypropylene copolymer on brittleâ€ductile transition of polypropylene random copolymer. Journal of Applied Polymer Science, 2013, 129, 3613-3622.	1.3	15
53	Manipulation of multiphase morphology in the reactive blending system OBC/PLA/EGMA. RSC Advances, 2015, 5, 96353-96359.	1.7	13
54	Effects of matrix molecular weight on structure and reinforcement of high density polyethylene/mica composites. Chinese Journal of Polymer Science (English Edition), 2011, 29, 377-389.	2.0	11

#	Article	IF	CITATIONS
55	Synergistic effects of polyethylene glycol and ammonium polyphosphate on intumescent flameâ€retardant polypropylene. Polymer Engineering and Science, 2013, 53, 410-416.	1.5	11
56	Exploring interfacial enhancement in polystyrene/multiwalled carbon nanotube monofilament induced by stretching. Composites Part A: Applied Science and Manufacturing, 2014, 61, 84-90.	3.8	11
57	Ordered longâ€helical conformation of isotactic polypropylene obtained in constrained environment of nanoclay. Polymers for Advanced Technologies, 2011, 22, 1375-1380.	1.6	10
58	Brittle–ductile transition behavior of poly(ethylene terephthalate)/poly(ethylene-octene) blend: the roles of compatibility and test temperature. Journal of Materials Science, 2014, 49, 1794-1804.	1.7	10
59	Reduction of graphene oxide with the presence of polypropylene micro-latex for facile preparation of polypropylene/graphene nanosheet composites. Colloid and Polymer Science, 2015, 293, 1495-1503.	1.0	10
60	Polymorphic structures phase diagram of shear-induced isotactic polypropylene/carbon fiber cylindrites. Materials and Design, 2018, 150, 40-48.	3.3	9
61	Correlations between microstructure of αâ€row nuclei and polymorphism of shearâ€induced iPP/carbon fiber cylindrite. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 368-377.	2.4	9
62	Rheological behaviours of guar gum derivatives with hydrophobic unsaturated long-chains. RSC Advances, 2020, 10, 32050-32057.	1.7	9
63	Towards high-performance all-polyethylene materials by a two-step processing strategy using two-roll mill. Polymer, 2021, 228, 123956.	1.8	9
64	The variable role of clay on the crystallization behavior of DMDBS-nucleated polypropylene. Chinese Journal of Polymer Science (English Edition), 2011, 29, 732-740.	2.0	8
65	Largely Improved Stretch Ductility and β-Form Room-temperature Durability of Poly(vinylidene) Tj ETQq1 1 0.7 2018, 36, 1277-1285.	784314 rgB ⁻ 2.0	Г /Overlock 1 8
66	Homogeneous synthesis of hydroxypropyl guar gum in an ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydrate Polymers, 2013, 93, 686-690.	5.1	7
67	Toughening of polypropylene with crystallizable poly(ethylene oxide). Polymer International, 2011, 60, 781-786.	1.6	6
68	Enhanced crystallization behaviors of poly(ethylene terephthalate) via adding expanded graphite and poly(ethylene glycol). Colloid and Polymer Science, 2013, 291, 911-917.	1.0	6
69	Thermal annealing-induced superior toughness in polypropylene/poly(ethylene glycol) blend and its structural origin. Polymer Engineering and Science, 2013, 53, 2053-2060.	1.5	6
70	Crystallographic features of poly(vinylidene fluoride) film upon an attractive substrate of KBr. Physical Chemistry Chemical Physics, 2017, 19, 27828-27838.	1.3	6
71	Realizing self-reinforcement of polyethylene via high-speed shear processing. Journal of Polymer Research, 2019, 26, 1.	1.2	6
72	One-step synthesis of glucose-branched galactomannan. Carbohydrate Research, 2011, 346, 1973-1977.	1.1	5

#	Article	IF	CITATIONS
73	Polystyreneâ€wrapping multiâ€walled carbon nanotubes obtained via simple physical modification of melt mixing. Polymers for Advanced Technologies, 2011, 22, 1359-1365.	1.6	5
74	Preparation of polypropylene/graphite nanocomposite with the aids of rotating solidâ€state mixing and dynamic packing injection molding. Polymer Composites, 2014, 35, 1943-1951.	2.3	5
75	Structural origins of mechanical strengthening in poly(phenylene sulfide)/multiwalled carbon nanotube nanocomposites obtained via hotâ€stretching. Polymer Composites, 2019, 40, E589.	2.3	5
76	Exploring formation rationale of skin-core heterogeneity during PVA solutions evaporation by laser-induced fluorescence analysis. Polymer, 2021, 224, 123759.	1.8	5
77	Acidâ€modified carbon nanotubes distribution and mechanical enhancement in polystyrene/elastomer blends. Polymer Engineering and Science, 2012, 52, 964-971.	1.5	4
78	Exploitation of a promising flameâ€retardant engineering plastics by molten composited polyketone and diethyl zinc phosphinate. Polymers for Advanced Technologies, 2019, 30, 1978-1988.	1.6	4
79	Comparison of the toughening behavior for poly(ethylene terephthalate) with spherulitic or ellipsoid elastomer-particles. Journal of Polymer Research, 2014, 21, 1.	1.2	3
80	Unusual rheological characteristics of polypropylene/organoclay nanocomposites in continuous cooling process. Journal of Applied Polymer Science, 2012, 125, E292.	1.3	2
81	Influence of molecular weight on molding efficiency and properties of sintered UHMWPE thick-size products. Journal of Polymer Research, 2021, 28, 1.	1.2	1