James J Mccarty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
2	Insight Into Seeded Tau Fibril Growth From Molecular Dynamics Simulation of the Alzheimer's Disease Protofibril Core. Frontiers in Molecular Biosciences, 2021, 8, 624302.	1.6	17
3	Heightened Cold-Denaturation of Proteins at the Ice–Water Interface. Journal of the American Chemical Society, 2020, 142, 5722-5730.	6.6	59
4	The proline-rich domain promotes Tau liquid–liquid phase separation in cells. Journal of Cell Biology, 2020, 219, .	2.3	58
5	Small ion effects on self-coacervation phenomena in block polyampholytes. Journal of Chemical Physics, 2019, 151, 034904.	1.2	46
6	Complete Phase Diagram for Liquid–Liquid Phase Separation of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2019, 10, 1644-1652.	2.1	204
7	Molecular design of self-coacervation phenomena in block polyampholytes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8224-8232.	3.3	88
8	Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. ELife, 2019, 8, .	2.8	111
9	Searching for Entropically Stabilized Phases: The Case of Silver Iodide. Journal of Physical Chemistry C, 2018, 122, 1786-1790.	1.5	18
10	Accuracy, Transferability, and Efficiency of Coarse-Grained Models of Molecular Liquids. Journal of Physical Chemistry B, 2018, 122, 10257-10278.	1.2	26
11	Effect of Surfactants on Surface-Induced Denaturation of Proteins: Evidence of an Orientation-Dependent Mechanism. Journal of Physical Chemistry B, 2018, 122, 11390-11399.	1.2	33
12	Variational Flooding Study of a S _N 2 Reaction. Journal of Physical Chemistry Letters, 2017, 8, 580-583.	2.1	23
13	A variational conformational dynamics approach to the selection of collective variables in metadynamics. Journal of Chemical Physics, 2017, 147, 204109.	1.2	101
14	Bespoke Bias for Obtaining Free Energy Differences within Variationally Enhanced Sampling. Journal of Chemical Theory and Computation, 2016, 12, 2162-2169.	2.3	11
15	Variationally Optimized Free-Energy Flooding for Rate Calculation. Physical Review Letters, 2015, 115, 070601.	2.9	35
16	Fast equilibration of coarse-grained polymeric liquids. Journal of Computational Science, 2015, 9, 33-38.	1.5	8
17	An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale. Journal of Chemical Physics, 2014, 140, 204913.	1.2	65
18	Effective potentials for representing polymers in melts as chains of interacting soft particles. Journal of Chemical Physics, 2013, 139, 124906.	1.2	36

JAMES J MCCARTY

#	Article	IF	CITATIONS
19	Thermodynamic Consistency in Variable-Level Coarse Graining of Polymeric Liquids. Physical Review Letters, 2012, 109, 168301.	2.9	55
20	Thermodynamic Consistency between Analytic Integral Equation Theory and Coarse-Grained Molecular Dynamics Simulations of Homopolymer Melts. Macromolecules, 2012, 45, 8482-8493.	2.2	35
21	Analytical rescaling of polymer dynamics from mesoscale simulations. Journal of Chemical Physics, 2010, 132, 224903.	1.2	44
22	Effective Soft-Core Potentials and Mesoscopic Simulations of Binary Polymer Mixtures. Macromolecules, 2010, 43, 3964-3979.	2.2	25
23	Multiscale Modeling of Coarse-Grained Macromolecular Liquids. Journal of Physical Chemistry B, 2009, 113, 11876-11886.	1.2	36