
Subhadip Neogi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed- ligand-devised anionic MOF with divergent open Co(II)-nodes as chemo-resistant, bi-functional material for electrochemical water oxidation and mild-condition tandem CO2 fixation. Chemical Engineering Journal, 2022, 429, 132301.	12.7	51
2	<i>i>In situ</i> fabricated MOF–cellulose composite as an advanced ROS deactivator-convertor: fluoroswitchable bi-phasic tweezers for free chlorine detoxification and size-exclusive catalytic insertion of aqueous H ₂ O ₂ . Journal of Materials Chemistry A, 2022, 10, 4316-4332.	10.3	19
3	Urea-engineering mediated hydrogen-bond donating Friedel–Crafts alkylation of indoles and nitroalkenes in a dual-functionalized microporous metal–organic framework with high recyclability and pore-fitting-induced size-selectivity. Inorganic Chemistry Frontiers, 2022, 9, 1897-1911.	6.0	20
4	Microporous carbon derived from cotton stalk crop-residue across diverse geographical locations as efficient and regenerable CO2 adsorbent with selectivity. Journal of CO2 Utilization, 2022, 60, 101975.	6.8	12
5	Devising ultra-robust mixed-matrix membrane separators using functionalized MOF–poly(phenylene) Tj ETQq1 I 10, 11150-11162.	l 0.78431 10.3	4 rgBT /Ove 17
6	Brà nsted Acid-Functionalized Ionic Co(II) Framework: A Tailored Vessel for Electrocatalytic Oxygen Evolution and Size-Exclusive Optical Speciation of Biothiols. ACS Applied Materials & Interfaces, 2022, 14, 29773-29787.	8.0	17
7	Selective and Multicyclic CO ₂ Adsorption with Visible Light-Driven Photodegradation of Organic Dyes in a Robust Metal–Organic Framework Embracing Heteroatom-Affixed Pores. Inorganic Chemistry, 2022, 61, 10731-10742.	4.0	11
8	Dual-functionalization actuated trimodal attribute in an ultra-robust MOF: exceptionally selective capture and effectual fixation of CO ₂ with fast-responsive, nanomolar detection of assorted organo-contaminants in water. Materials Chemistry Frontiers, 2021, 5, 979-994.	5.9	50
9	An ultralight charged MOF as fluoro-switchable monitor for assorted organo-toxins: size-exclusive dye scrubbing and anticounterfeiting applications <i>via</i> Tb ³⁺ sensitization. Inorganic Chemistry Frontiers, 2021, 8, 296-310.	6.0	41
10	N-Functionality actuated improved CO ₂ adsorption and turn-on detection of organo-toxins with guest-induced fluorescence modulation in isostructural diamondoid MOFs. Journal of Materials Chemistry C, 2021, 9, 7142-7153.	5.5	32
11	Dual-catalyst engineered porous organic framework for visible-light triggered, metal-free and aerobic sp3 C H activation in highly synergistic and recyclable fashion. Journal of Catalysis, 2021, 394, 40-49.	6.2	16
12	High surface area porous carbon from cotton stalk agro-residue for CO2 adsorption and study of techno-economic viability of commercial production. Journal of CO2 Utilization, 2021, 45, 101450.	6.8	41
13	Devising Mixed-Ligand Based Robust Cd(II)-Framework From Bi-Functional Ligand for Fast Responsive Luminescent Detection of Fe3+ and Cr(VI) Oxo-Anions in Water With High Selectivity and Recyclability. Frontiers in Chemistry, 2021, 9, 651866.	3.6	19
14	Chemically Robust and Bifunctional Co(II)-Framework for Trace Detection of Assorted Organo-toxins and Highly Cooperative Deacetalization–Knoevenagel Condensation with Pore-Fitting-Induced Size-Selectivity. ACS Applied Materials & Interfaces, 2021, 13, 28378-28389.	8.0	40
15	High-Performance Water Harvester Framework for Triphasic and Synchronous Detection of Assorted Organotoxins with Site-Memory-Reliant Security Encryption via pH-Triggered Fluoroswitching. ACS Applied Materials & Interfaces, 2021, 13, 34012-34026.	8.0	44
16	Structural engineering in pre-functionalized, imine-based covalent organic framework via anchoring active Ru(II)-complex for visible-light triggered and aerobic cross-coupling of α-amino esters with indoles. Applied Catalysis B: Environmental, 2021, 292, 120149.	20.2	30
17	Stimuli -triggered fluoro-switching in metal–organic frameworks: applications and outlook. Dalton Transactions, 2021, 50, 4067-4090.	3.3	24
18	Intrinsic-Unsaturation-Enriched Biporous and Chemorobust Cu(II) Framework for Efficient Catalytic CO ₂ Fixation and Pore-Fitting Actuated Size-Exclusive Hantzsch Condensation with Mechanistic Validation. ACS Applied Materials & Interfaces, 2021, 13, 55123-55135.	8.0	40

SUBHADIP NEOGI

#	Article	IF	CITATIONS
19	Structural Dynamism-Actuated Reversible CO ₂ Adsorption Switch and Postmetalation-Induced Visible Light C _{î±} –H Photocyanation with Rare Size Selectivity in N-Functionalized 3D Covalent Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 48642-48653.	8.0	35
20	Borrowing hydrogen activity of NH2-MIL-125 for N-alkylation of amines with alcohols under solvent and base free condition. Catalysis Communications, 2020, 144, 106085.	3.3	12
21	Pore-Functionalized and Hydrolytically Robust Cd(II)-Metal–Organic Framework for Highly Selective, Multicyclic CO ₂ Adsorption and Fast-Responsive Luminescent Monitoring of Fe(III) and Cr(VI) Ions with Notable Sensitivity and Reusability. Inorganic Chemistry, 2020, 59, 3012-3025.	4.0	90
22	Antibiotic-triggered reversible luminescence switching in amine-grafted mixed-linker MOF: exceptional turn-on and ultrafast nanomolar detection of sulfadiazine and adenosine monophosphate with molecular keypad lock functionality. Journal of Materials Chemistry A, 2019, 7, 19471-19484.	10.3	96
23	Devising Chemically Robust and Cationic Ni(II)–MOF with Nitrogen-Rich Micropores for Moisture-Tolerant CO ₂ Capture: Highly Regenerative and Ultrafast Colorimetric Sensor for TNP and Multiple Oxo–Anions in Water with Theoretical Revelation. ACS Applied Materials & Interfaces. 2019. 11. 40134-40150.	8.0	97
24	Guest-Induced Ultrasensitive Detection of Multiple Toxic Organics and Fe ³⁺ lons in a Strategically Designed and Regenerative Smart Fluorescent Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 9042-9053.	8.0	184
25	Highly Active Ultrasmall Ni Nanoparticle Embedded Inside a Robust Metal–Organic Framework: Remarkably Improved Adsorption, Selectivity, and Solvent-Free Efficient Fixation of CO ₂ . Inorganic Chemistry, 2019, 58, 8100-8110.	4.0	67
26	Covalently hooked EOSIN-Y in a Zr(IV) framework as visible-light mediated, heterogeneous photocatalyst for efficient C H functionalization of tertiary amines. Journal of Catalysis, 2019, 371, 298-304.	6.2	42
27	Unprecedented NH ₂ -MIL-101(Al)/ <i>n</i> -Bu ₄ NBr system as solvent-free heterogeneous catalyst for efficient synthesis of cyclic carbonates <i>via</i> CO ₂ cycloaddition. Dalton Transactions, 2018, 47, 418-428.	3.3	56
28	Pore Wall-Functionalized Luminescent Cd(II) Framework for Selective CO ₂ Adsorption, Highly Specific 2,4,6-Trinitrophenol Detection, and Colorimetric Sensing of Cu ²⁺ lons. ACS Sustainable Chemistry and Engineering, 2018, 6, 10295-10306.	6.7	102
29	Construction of Pillar-Layer Metal–Organic Frameworks for CO ₂ Adsorption under Humid Climate: High Selectivity and Sensitive Detection of Picric Acid in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 11307-11315.	6.7	74
30	Stoichiometry Controlled Structural Variation in Three-Dimensional Zn(II)–Frameworks: Single-Crystal to Single-Crystal Transmetalation and Selective CO ₂ Adsorption. Crystal Growth and Design, 2016, 16, 5238-5246.	3.0	33
31	A Partially Fluorinated, Water-Stable Cu(II)–MOF Derived via Transmetalation: Significant Gas Adsorption with High CO ₂ Selectivity and Catalysis of Biginelli Reactions. Inorganic Chemistry, 2016, 55, 7835-7842.	4.0	71
32	A Versatile Cu ^{II} Metal–Organic Framework Exhibiting High Gas Storage Capacity with Selectivity for CO ₂ : Conversion of CO ₂ to Cyclic Carbonate and Other Catalytic Abilities. Chemistry - A European Journal, 2016, 22, 3387-3396.	3.3	107
33	Structural variation of transition metal coordination polymers based on bent carboxylate and flexible spacer ligand: polymorphism, gas adsorption and SC-SC transmetallation. CrystEngComm, 2016, 18, 4323-4335.	2.6	30
34	Versatile Tailoring of Paddleâ€Wheel Zn ^{II} Metal–Organic Frameworks through Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations. Chemistry - A European Journal, 2015, 21, 16083-16090.	3.3	35
35	Significant Gas Adsorption and Catalytic Performance by a Robust Cu ^{II} –MOF Derived through Singleâ€Crystal to Singleâ€Crystal Transmetalation of a Thermally Lessâ€6table Zn ^{II} –MOF. Chemistry - A European Journal, 2015, 21, 19064-19070.	3.3	68
36	Singleâ€Crystal to Singleâ€Crystal Linker Substitution, Linker Place Exchange, and Transmetalation Reactions in Interpenetrated Pillared–Bilayer Zinc(II) Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 17422-17429.	3.3	32

SUBHADIP NEOGI

#	Article	IF	CITATIONS
37	Guest dependent reversible single-crystal to single-crystal structural transformation in a flexible Gd(<scp>iii</scp>)-coordination polymer. Inorganic Chemistry Frontiers, 2015, 2, 395-402.	6.0	15
38	Solvent induced single-crystal to single-crystal structural transformation and concomitant transmetalation in a 3D cationic Zn(<scp>ii</scp>)-framework. Chemical Communications, 2015, 51, 3173-3176.	4.1	52
39	Dynamic heteroleptic metal-phenanthroline complexes: from structure to function. Dalton Transactions, 2014, 43, 3815-3834.	3.3	117
40	Triptycene based organometallic complexes: a new class of acceptor synthons for supramolecular ensembles. Dalton Transactions, 2014, 43, 13270-13277.	3.3	21
41	Structural variation in Zn(<scp>ii</scp>) coordination polymers built with a semi-rigid tetracarboxylate and different pyridine linkers: synthesis and selective CO ₂ adsorption studies. Dalton Transactions, 2014, 43, 6100-6107.	3.3	33
42	Synthesis of new organochalcogen (Se or Te) based multifunctional pyrimidine derivatives: X-ray structure determination of 2,4-bis(arylchalcogenyl)pyrimidine and 2-chloro-4,6-bis(arylchalcogenyl)pyrimidine compounds. Polyhedron, 2014, 81, 316-322.	2.2	1
43	Construction of Non-Interpenetrated Charged Metal–Organic Frameworks with Doubly Pillared Layers: Pore Modification and Selective Gas Adsorption. Inorganic Chemistry, 2014, 53, 7591-7598.	4.0	72
44	Substitution at the metal center of coordination polymers in single-crystal-to-single-crystal (SC-SC) transformation. CrystEngComm, 2013, 15, 9239.	2.6	25
45	Control of Intermolecular Bonds by Deposition Rates at Room Temperature: Hydrogen Bonds versus Metal Coordination in Trinitrile Monolayers. Journal of the American Chemical Society, 2013, 135, 691-695.	13.7	52
46	Heteroleptic Metallosupramolecular Racks, Rectangles, and Trigonal Prisms: Stoichiometry-Controlled Reversible Interconversion. Inorganic Chemistry, 2013, 52, 6975-6984.	4.0	47
47	Solvent-Dependent Stabilization of Metastable Monolayer Polymorphs at the Liquid–Solid Interface. ACS Nano, 2013, 7, 6711-6718.	14.6	46
48	Implications of Stoichiometry-Controlled Structural Changeover Between Heteroleptic Trigonal [Cu(phenAr ₂)(py)] ⁺ and Tetragonal [Cu(phenAr ₂)(py) ₂] ⁺ Motifs for Solution and Solid-State Supramolecular Self-Assembly. Inorganic Chemistry, 2012, 51, 10832-10841.	4.0	42
49	Microporous La(III) Metalâ^'Organic Framework Using a Semirigid Tricarboxylic Ligand: Synthesis, Single-Crystal to Single-Crystal Sorption Properties, and Gas Adsorption Studies. Crystal Growth and Design, 2010, 10, 3410-3417.	3.0	68
50	Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A, 2009, 299, 1-4.	4.8	112
51	Helicity-induced two-layered Cd(II) coordination polymers built with different kinked dicarboxylates and an organodiimidazole. Polyhedron, 2009, 28, 3923-3928.	2.2	14
52	Water dimers connect [Cu(cda)(py)3] (cda=pyridine-4-hydroxy-2,6-dicarboxylate, py=pyridine) complex units to left- and right-handed helices that form a tubular coordination polymer through supramolecular bonding. Inorganica Chimica Acta, 2008, 361, 56-62.	2.4	17
53	Variation of Structures of Coordination Polymers of Ca(II), Sr(II), and Ba(II) with a Tripodal Ligand: Synthesis, Structural, and Gas Adsorption Studies. Crystal Growth and Design, 2008, 8, 1554-1558.	3.0	23
54	Porous Lanthanide Coordination Polymers Built With a Podand and its Decomposition Product Oxalate: Identification of Discrete Water Clusters of Different Nuclearity. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 40-48.	0.6	0

SUBHADIP NEOGI

#	Article	IF	CITATIONS
55	Transition-Metal Porous Coordination Polymers with a Podand Ligand: Structure of Discrete Water Clusters and Variable-Temperature Magnetism. European Journal of Inorganic Chemistry, 2007, 2007, 5426-5432.	2.0	11
56	Metalâ^'Organic Framework Structures of Cd(II) Built with Two Closely Related Podands That Are Further Stabilized by Water Clusters. Crystal Growth and Design, 2006, 6, 433-438.	3.0	19
57	Metal-organic frameworks of lanthanide (III) ions with a podand bearing terminal carboxylates: Identification of water clusters of different nuclearity. Polyhedron, 2006, 25, 1491-1497.	2.2	20
58	An Infinite Water Chain Passes through an Array of Zn(II) Metallocycles Built with a Podand Bearing Terminal Carboxylates. Inorganic Chemistry, 2005, 44, 816-818.	4.0	92
59	Structure of Discrete (H2O)12Clusters Present in the Cavity of Polymeric Interlinked Metallocycles of Nd(III) or Gd(III) and a Podand Ligand. Inorganic Chemistry, 2004, 43, 3771-3773.	4.0	118