Jianhan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233495/publications.pdf

Version: 2024-02-01

94269 143772 4,146 113 37 57 citations h-index g-index papers 114 114 114 2973 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent progress in porous organic polymers and their application for CO2 capture. Chinese Journal of Chemical Engineering, 2022, 42, 91-103.	1.7	28
2	Facile preparation of oxygen-rich porous polymer microspheres from lignin-derived phenols for selective CO2 adsorption and iodine vapor capture. Chemosphere, 2022, 288, 132499.	4.2	39
3	Dual-active sites design of Snx-Sby-O-GO nanosheets for enhancing electrochemical CO2 reduction via Sb-accelerating water activation. Applied Catalysis B: Environmental, 2022, 307, 121171.	10.8	7
4	Acetamido-functionalized hyper-crosslinked polymers for efficient removal of phenol in aqueous solution. Separation and Purification Technology, 2022, 287, 120566.	3.9	12
5	Thioether-functionalized porphyrin-based polymers for Hg2+ efficient removal in aqueous solution. Journal of Hazardous Materials, 2022, 429, 128303.	6.5	11
6	Pd-SnO2 interface enables synthesis of syngas with controllable H2/CO ratios by electrocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2022, 312, 121392.	10.8	18
7	Ru Nanoclusters Supported on Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Catalytic Hydrogenation of Quinolines. ACS Applied Nano Materials, 2022, 5, 6213-6220.	2.4	3
8	Imidazole-modified polymers and their adsorption of salicylic acid from aqueous solution. Journal of Polymer Research, 2022, 29, .	1.2	1
9	N-rich porous organic polymers based on Schiff base reaction for CO2 capture and mercury(II) adsorption. Journal of Colloid and Interface Science, 2021, 587, 121-130.	5.0	89
10	Inside-mode indium oxide/carbon nanotubes for efficient carbon dioxide electroreduction by suppressing hydrogen evolution. Chemical Communications, 2021, 57, 1234-1237.	2.2	7
11	Polar modified dendritic post-cross-linked polymer for Cu ²⁺ adsorption. Environmental Technology (United Kingdom), 2021, 42, 1402-1410.	1.2	O
12	Furan- and Thiophene-Modified Hyper-Crosslinked Polymers and Their Adsorption of Phenol from Aqueous Solution. Industrial & Engineering Chemistry Research, 2021, 60, 931-938.	1.8	15
13	One-step synthesis of N-containing hyper-cross-linked polymers by two crosslinking strategies and their CO2 adsorption and iodine vapor capture. Separation and Purification Technology, 2021, 262, 118352.	3.9	48
14	Promoting H ₂ Activation over Molybdenum Carbide by Modulation of Metalâ€Support Interaction for Efficient Catalytic Hydrogenation. ChemCatChem, 2021, 13, 3283-3289.	1.8	11
15	Design of well-defined shell–core covalent organic frameworks/metal sulfide as an efficient Z-scheme heterojunction for photocatalytic water splitting. Chemical Science, 2021, 12, 16065-16073.	3.7	43
16	Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion. Chemical Engineering Journal, 2020, 385, 123973.	6.6	156
17	Selectable Microporous Carbons Derived from Poplar Wood by Three Preparation Routes for CO ₂ Capture. ACS Omega, 2020, 5, 17450-17462.	1.6	31
18	Amino-Functionalized Porphyrin-Based Porous Organic Polymers for CO ₂ Capture and Hg ²⁺ Removal. Energy & Ene	2.5	21

#	Article	IF	CITATIONS
19	Postfunctionalization of Porous Organic Polymers Based on Friedel–Crafts Acylation for CO ₂ and Hg ²⁺ Capture. ACS Applied Materials & Diterfaces, 2020, 12, 36652-36659.	4.0	45
20	Hydroquinone-modified hyper-crosslinked polymer and its adsorption of aniline. Chemical Engineering Journal Advances, 2020, 1, 100004.	2.4	9
21	Filling the Pores of the Postâ€Crossâ€Linked Polymers with Different Rigid Crossâ€Linking Bridges. ChemistrySelect, 2020, 5, 7941-7946.	0.7	4
22	Carbonyl functionalized hyper-cross-linked polymers for CO2 capture. Journal of Polymer Research, 2020, 27, 1.	1.2	5
23	Bifunctional Porous Organic Polymers Based on Postfunctionalization of the Ketone-Based Polymers. Industrial & Description of the Ketone-Based Polymers.	1.8	12
24	Hyper-Cross-Linked Phenolic Hydroxyl Polymers with Hierarchical Porosity and Their Efficient Adsorption Performance. Industrial & Engineering Chemistry Research, 2020, 59, 11275-11283.	1.8	21
25	Fabrication of O-enriched HyperCross-Linked Polymers and Their Adsorption of Aniline from Aqueous Solution. Industrial & Description of Aniline from Aqueous Solution. Industrial & Description of Aniline from Aqueous Solution.	1.8	23
26	Nitrogen-Doped Ultrahigh Microporous Carbons Derived from Two Nitrogen-Containing Post-Cross-Linked Polymers for Efficient CO ₂ Capture. Journal of Chemical & Engineering Data, 2020, 65, 2238-2250.	1.0	6
27	Anisole-modified hyper-cross-linked resins for efficient adsorption of aniline from aqueous solution. Journal of Colloid and Interface Science, 2020, 569, 177-183.	5.0	33
28	Imidazolium Salt-Incorporated Postcross-Linked Porous Polymers for Efficient Adsorption of Rhodamine B and Cd ²⁺ from Aqueous Solution. Journal of Chemical & Data, 2020, 65, 1850-1856.	1.0	10
29	Melamine-supported porous organic polymers for efficient CO2 capture and Hg2+ removal. Chemical Engineering Journal, 2020, 387, 124070.	6.6	50
30	Porphyrin-Based Triazine Polymers and Their Derived Porous Carbons for Efficient CO ₂ Capture. Industrial & Derived Porous Carbons for Efficient CO ₂	1.8	23
31	Oxygen-rich porous carbons from carbonyl modified hyper-cross-linked polymers for efficient CO2 capture. Journal of Polymer Research, 2020, 27, 1.	1.2	22
32	Imidazole-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Microporous and Mesoporous Materials, 2019, 275, 131-138.	2.2	62
33	One-pot synthesis of melamine-based porous polyamides for CO2 capture. Microporous and Mesoporous Materials, 2019, 285, 105-111.	2.2	64
34	Imidazolium Salt Incorporated Poly(N-vinylimidazole-co-ethylene glycol dimethacrylate) for Efficient Adsorption of Congo Red and Hg2+ from Aqueous Solution. Journal of Chemical & Engineering Data, 2019, 64, 2627-2633.	1.0	22
35	Hollow Hyper-Cross-Linked Polymer Microspheres for Efficient Rhodamine B Adsorption and CO ₂ Capture. Journal of Chemical & Data, 2019, 64, 1662-1670.	1.0	27
36	Catalyst-free synthesis of triazine-based porous organic polymers for Hg2+ adsorptive removal from aqueous solution. Chemical Engineering Journal, 2019, 371, 260-266.	6.6	94

#	Article	IF	Citations
37	Oxygen-rich hyper-cross-linked polymers with hierarchical porosity for aniline adsorption. Chemical Engineering Journal, 2019, 368, 29-36.	6.6	77
38	One-pot synthesis of hyper-cross-linked polymers chemically modified with pyrrole, furan, and thiophene for phenol adsorption from aqueous solution. Journal of Colloid and Interface Science, 2019, 538, 499-506.	5.0	53
39	Hyper-cross-linked polymers functionalized with primary amine and its efficient adsorption of salicylic acid from aqueous solution. Journal of Chemical Thermodynamics, 2019, 131, 387-392.	1.0	16
40	Amino-modified hyper-cross-linked polymers with hierarchical porosity for adsorption of salicylic acid from aqueous solution. Journal of Chemical Thermodynamics, 2019, 131, 1-8.	1.0	31
41	Dendritic post-cross-linked resin for the adsorption of crystal violet from aqueous solution. Journal of Chemical Thermodynamics, 2019, 130, 235-242.	1.0	23
42	Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Chemical Engineering Journal, 2018, 339, 509-518.	6.6	99
43	Ethylene glycol dimethacrylate modified hyper-cross-linked resins: Porogen effect on pore structure and adsorption performance. Chemical Engineering Journal, 2018, 339, 278-287.	6.6	57
44	Synthesis of Triazine-Based Porous Organic Polymers Derived N-Enriched Porous Carbons for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 2856-2865.	1.8	102
45	O-containing hyper-cross-linked polymers and porous carbons for CO 2 capture. Microporous and Mesoporous Materials, 2018, 264, 104-111.	2.2	52
46	Hydrogen Bonding of Acylamino-Modified Macroporous Cross-Linked Polystyrene Resins with Phenol. Journal of Chemical & Engineering Data, 2018, 63, 1917-1924.	1.0	8
47	CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. Journal of Colloid and Interface Science, 2018, 513, 304-313.	5.0	85
48	Melamineâ€Based Metalâ€Chelating Porous Organic Polymers for Efficient CO ₂ Capture and Conversion. European Journal of Inorganic Chemistry, 2018, 2018, 4175-4180.	1.0	29
49	Hierarchical porous hyper-cross-linked polymers modified with phenolic hydroxyl groups and their efficient adsorption of aniline from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 80-87.	2.3	41
50	Alkoxy-Modified Hyper-Cross-Linked Polymers with Hierarchical Porosity and Their Adsorption of Salicylic Acid from Aqueous Solution. Industrial & Engineering Chemistry Research, 2018, 57, 12420-12428.	1.8	23
51	Triazine-based hyper-cross-linked polymers with inorganic-organic hybrid framework derived porous carbons for CO2 capture. Chemical Engineering Journal, 2018, 353, 1-14.	6.6	75
52	4-Vinylpyridine-modified post-cross-linked resins and their adsorption of phenol and Rhodamine B. Journal of Colloid and Interface Science, 2018, 531, 394-403.	5.0	25
53	<i>N</i> -Vinylimidazole-Modified Post-Cross-Linked Resin with Pendent Vinyl Groups and Their Adsorption of Phenol from Aqueous Solution. Journal of Chemical & Engineering Data, 2018, 63, 3584-3591.	1.0	6
54	Controllable Synthesis of Polar Modified Hyper-Cross-Linked Resins and Their Adsorption of 2-Naphthol and 4-Hydroxybenzoic Acid from Aqueous Solution. Industrial & Engineering Chemistry Research, 2017, 56, 2984-2992.	1.8	38

#	Article	IF	CITATIONS
55	Polar hyper-cross-linked resin with abundant micropores/mesopores and its enhanced adsorption toward salicylic acid: Equilibrium, kinetics, and dynamic operation. Fluid Phase Equilibria, 2017, 438, 1-9.	1.4	37
56	Adsorption of p-chlorophenol on three amino-modified hyper-cross-linked resins. Journal of Colloid and Interface Science, 2017, 505, 585-592.	5.0	54
57	Tunable synthesis of the polar modified hyper-cross-linked resins and application to the adsorption. Journal of Colloid and Interface Science, 2017, 505, 383-391.	5.0	26
58	N -vinylimidazole modified hyper-cross-linked resins and their adsorption toward Rhodamine B: Effect of the cross-linking degree. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 293-300.	2.7	26
59	Controllable synthesis of N-vinylimidazole-modified hyper-cross-linked resins and their efficient adsorption of p-nitrophenol and o-nitrophenol. Journal of Colloid and Interface Science, 2017, 507, 42-50.	5. 0	42
60	Tunable porosity and polarity of polar post-cross-linked resins and selective adsorption. Journal of Colloid and Interface Science, 2017, 487, 231-238.	5.0	39
61	Phenol-modified hyper-cross-linked resins with almost all micro/mesopores and their adsorption to aniline. Journal of Colloid and Interface Science, 2017, 487, 31-37.	5. 0	70
62	Hydrophobic-hydrophilic interpenetrating polymer networks (IPNs) composed of hydrophobic polystyrene (PST) and hydrophilic polyacryldiethylenetriamine (PADETA) networks and their high efficient adsorption to salicylic acid. Fluid Phase Equilibria, 2016, 427, 384-389.	1.4	17
63	Unraveling the Hydrolysis of Merocyanine-Based Probes in Biological Assay. Analytical Chemistry, 2016, 88, 9136-9142.	3.2	10
64	Tunable Porosity and Polarity of the Polar Hyper-Cross-Linked Resins and the Enhanced Adsorption toward Phenol. Industrial & Engineering Chemistry Research, 2016, 55, 12213-12221.	1.8	21
65	Comparison of hyper-cross-linked polystyrene/polyacryldiethylenetriamine (HCP/PADETA) interpenetrating polymer networks (IPNs) with hyper-cross-linked polystyrene (HCP): structure, adsorption and separation properties. RSC Advances, 2016, 6, 32340-32348.	1.7	11
66	Post-Crosslinked Poly(<i>meta</i> -divinylbenzene) and Its Adsorption to Phenol from Aqueous Solutions. Journal of Nanoscience and Nanotechnology, 2016, 16, 6810-6815.	0.9	3
67	Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: Equilibrium and kinetics. Journal of Colloid and Interface Science, 2016, 467, 230-238.	5.0	67
68	Polar-modified post-cross-linked polystyrene and its adsorption towards salicylic acid from aqueous solution. Chemical Engineering Journal, 2016, 286, 400-407.	6.6	65
69	A novel polar-modified post-cross-linked resin: Effect of the porogens on the structure and adsorption performance. Journal of Colloid and Interface Science, 2016, 466, 322-329.	5.0	25
70	A novel polar-modified post-cross-linked resin and its enhanced adsorption to salicylic acid: Equilibrium, kinetics and breakthrough studies. Journal of Colloid and Interface Science, 2016, 470, 1-9.	5.0	29
71	Hydrophobicâ€"hydrophilic post-cross-linked polystyrene/poly (methyl acryloyl diethylenetriamine) interpenetrating polymer networks and its adsorption properties. Journal of Colloid and Interface Science, 2016, 463, 61-68.	5.0	33
72	Synthesis and adsorption property of hydrophilicâ€"hydrophobic macroporous crosslinked poly(methyl acryloyl diethylenetriamine)/poly(divinylbenzene) (PMADETA/PDVB) interpenetrating polymer networks (IPNs). RSC Advances, 2015, 5, 26616-26624.	1.7	16

#	Article	IF	Citations
73	Synthesis of Hollow BiVO ₄ /Ag Composite Microspheres and Their Photocatalytic and Surfaceâ€Enhanced Raman Scattering Properties. ChemPlusChem, 2015, 80, 871-877.	1.3	19
74	A \hat{l}^2 -naphthol-modified hyper-cross-linked resin for adsorption of <i>p-</i> aminobenzoic acid from aqueous solutions. Desalination and Water Treatment, 2015, 54, 1893-1902.	1.0	6
75	Acetamideâ€modified hyperâ€crossâ€linked resin: Synthesis, characterization, and adsorption performance to phenol from aqueous solution. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
76	Polar modified post-cross-linked resin and its adsorption toward salicylic acid from aqueous solution: Equilibrium, kinetics and breakthrough studies. Journal of Colloid and Interface Science, 2015, 451, 1-6.	5.0	21
77	Magnetic polar post-cross-linked resin and its adsorption towards salicylic acid from aqueous solution. Chemical Engineering Journal, 2015, 273, 240-246.	6.6	47
78	A novel hydrophilic–hydrophobic magnetic interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solution. Chemical Engineering Journal, 2015, 279, 250-257.	6.6	55
79	Macroporous crosslinked polydivinylbenzene/polyacryldiethylenetriamine (PDVB/PADETA) interpenetrating polymer networks (IPNs) and their efficient adsorption to o-aminobenzoic acid from aqueous solutions. Journal of Colloid and Interface Science, 2014, 429, 83-87.	5.0	19
80	An ethylenediamine-modified hypercrosslinked polystyrene resin: Synthesis, adsorption and separation properties. Chemical Engineering Journal, 2014, 242, 19-26.	6.6	29
81	Synthesis, characterization and adsorption properties of an amide-modified hyper-cross-linked resin. RSC Advances, 2014, 4, 41172-41178.	1.7	13
82	A novel post-cross-linked polystyrene/polyacryldiethylenetriamine (PST_pc/PADETA) interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solutions. Chemical Engineering Journal, 2014, 248, 216-222.	6.6	34
83	Aniline modified hypercrosslinked polystyrene resins and their adsorption equilibriums, kinetics and dynamics towards salicylic acid from aqueous solutions. Chemical Engineering Journal, 2013, 233, 124-131.	6.6	47
84	Resorcinol modified hypercrosslinked poly(styrene-co-divinlybenzene) resin and its adsorption equilibriums, kinetics and dynamics towards p-hydroxylbenzaldehyde from aqueous solution. Chemical Engineering Journal, 2013, 219, 238-244.	6.6	22
85	A hypercrosslinked poly(styrene-co-divinylbenzene) PS resin as a specific polymeric adsorbent for adsorption of 2-naphthol from aqueous solutions. Chemical Engineering Journal, 2013, 218, 267-275.	6.6	28
86	Hypercrosslinked poly(styrene-co-divinylbenzene) resin as a specific polymeric adsorbent for purification of berberine hydrochloride from aqueous solutions. Journal of Colloid and Interface Science, 2013, 400, 78-87.	5.0	30
87	Adsorption of CO ₂ , CH ₄ , and N ₂ on Ordered Mesoporous Carbon: Approach for Greenhouse Gases Capture and Biogas Upgrading. Environmental Science & Camp; Technology, 2013, 47, 5474-5480.	4.6	265
88	Phenol adsorption on α,α′-dichloro-p-xylene (DCX) and 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP) modified XAD-4 resins from aqueous solutions. Chemical Engineering Journal, 2013, 222, 1-8.	6.6	26
89	Adsorption of Berberine Hydrochloride, Ligustrazine Hydrochloride, Colchicine, and Matrine Alkaloids on Macroporous Resins. Journal of Chemical & Engineering Data, 2013, 58, 1271-1279.	1.0	21
90	Synthesis of \hat{i}^3 -LiV2O5 nanorods as a high-performance cathode for Li ion battery. Journal of Solid State Electrochemistry, 2012, 16, 2555-2561.	1.2	39

#	Article	IF	Citations
91	Gallic acid modified hyper-cross-linked resin and its adsorption equilibria and kinetics toward salicylic acid from aqueous solution. Chemical Engineering Journal, 2012, 191, 195-201.	6.6	33
92	Phenol adsorption on an N-methylacetamide-modified hypercrosslinked resin from aqueous solutions. Chemical Engineering Journal, 2012, 192, 192-200.	6.6	75
93	Efficient adsorptive removal of phenol by a diethylenetriamine-modified hypercrosslinked styrene–divinylbenzene (PS) resin from aqueous solution. Chemical Engineering Journal, 2012, 195-196, 40-48.	6.6	36
94	Bisphenol-A modified hyper-cross-linked polystyrene resin for salicylic acid removal from aqueous solution: Adsorption equilibrium, kinetics and breakthrough studies. Journal of Colloid and Interface Science, 2012, 372, 108-112.	5.0	19
95	A comparative adsorption study of \hat{l}^2 -naphthol on four polymeric adsorbents from aqueous solutions. Journal of Colloid and Interface Science, 2012, 380, 166-172.	5. O	8
96	Synthesis, characterization and adsorption properties of diethylenetriamine-modified hypercrosslinked resins for efficient removal of salicylic acid from aqueous solution. Journal of Hazardous Materials, 2012, 217-218, 406-415.	6.5	71
97	Hyper-cross-linked Polystyrene- <i>co</i> -divinylbenzene Resin Modified with Acetanilide: Synthesis, Structure, and Adsorptive Removal of Salicylic Acid from Aqueous Solution. Industrial & Samp; Engineering Chemistry Research, 2011, 50, 2891-2897.	1.8	29
98	Enhanced adsorption of salicylic acid onto a \hat{l}^2 -naphthol-modified hyper-cross-linked poly(styrene-co-divinylbenzene) resin from aqueous solution. Chemical Engineering Journal, 2011, 168, 715-721.	6.6	45
99	Methylaminoâ€groupâ€modified hypercrosslinked polystyrene resin for the removal of phenol from aqueous solution. Journal of Applied Polymer Science, 2011, 119, 1435-1442.	1.3	12
100	Hydroquinone modified hyperâ€ <i>cross</i> â€linked resin to be used as a polymeric adsorbent for adsorption of salicylic acid from aqueous solution. Journal of Applied Polymer Science, 2011, 121, 3717-3723.	1.3	13
101	Greatly improved adsorption of <i>N</i> â€methylated modified macroporous crossâ€linked polyacrylamide toward tannin from aqueous solution. Journal of Applied Polymer Science, 2011, 122, 2033-2038.	1.3	3
102	Surface modification on a hyper-cross-linked polymeric adsorbent by multiple phenolic hydroxyl groups to be used as a specific adsorbent for adsorptive removal of p-nitroaniline from aqueous solution. Journal of Colloid and Interface Science, 2010, 342, 462-466.	5.0	36
103	Adsorption behaviors of a novel carbonyl and hydroxyl groups modified hyper-cross-linked poly(styrene-co-divinylbenzene) resin for \hat{l}^2 -naphthol from aqueous solution. Journal of Hazardous Materials, 2010, 180, 634-639.	6.5	43
104	Tertiary amino groups modified macroporous crosslinked poly(styrene-co-divinylbenzene) and its oxidized adsorbent: Synthesis, characterization, and adsorption behavior. Journal of Hazardous Materials, 2009, 162, 771-776.	6. 5	13
105	Application of an easily water-compatible hypercrosslinked polymeric adsorbent for efficient removal of catechol and resorcinol in aqueous solution. Journal of Hazardous Materials, 2009, 167, 69-74.	6.5	44
106	Treatment of phenol and p-cresol in aqueous solution by adsorption using a carbonylated hypercrosslinked polymeric adsorbent. Journal of Hazardous Materials, 2009, 168, 1028-1034.	6.5	52
107	Removal of p-nitrophenol by a water-compatible hypercrosslinked resin functionalized with formaldehyde carbonyl groups and XAD-4 in aqueous solution: A comparative study. Journal of Colloid and Interface Science, 2009, 332, 60-64.	5.0	64
108	Synthesis, characterization, and adsorption properties of phenolic hydroxyl group modified hyper-cross-linked polymeric adsorbent. Journal of Colloid and Interface Science, 2009, 337, 19-23.	5.0	30

#	Article	IF	CITATIONS
109	Adsorption properties of a microporous and mesoporous hyper-crosslinked polymeric adsorbent functionalized with phenoxy groups for phenol in aqueous solution. Journal of Colloid and Interface Science, 2009, 339, 296-301.	5.0	19
110	Adsorption of p-nitroaniline by phenolic hydroxyl groups modified hyper-cross-linked polymeric adsorbent and XAD-4: A comparative study. Chemical Engineering Journal, 2009, 155, 722-727.	6.6	25
111	Synthesis, characterization, and adsorption behavior of aniline modified polystyrene resin for phenol in hexane and in aqueous solution. Journal of Colloid and Interface Science, 2008, 317, 434-441.	5.0	76
112	Adsorption properties of tea polyphenols onto three polymeric adsorbents with amide group. Journal of Colloid and Interface Science, 2007, 315, 407-414.	5.0	95
113	Adsorption behavior, thermodynamics, and mechanism of phenol on polymeric adsorbents with amide group in cyclohexane. Journal of Colloid and Interface Science, 2007, 316, 10-18.	5.0	58