Shiaw-Yih Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233484/publications.pdf

Version: 2024-02-01

147801 138484 3,649 63 31 58 citations h-index g-index papers 65 65 65 6314 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Proteogenomic Analysis of Salivary Adenoid Cystic Carcinomas Defines Molecular Subtypes and Identifies Therapeutic Targets. Clinical Cancer Research, 2023, 27, 852-864.	7.0	61
2	Combined IL-2, agonistic CD3 and 4-1BB stimulation preserve clonotype hierarchy in propagated non-small cell lung cancer tumor-infiltrating lymphocytes., 2022, 10, e003082.		11
3	CNGPLD: case–control copy-number analysis using Gaussian process latent difference. Bioinformatics, 2022, , .	4.1	O
4	Spontaneous tumor regression following COVID-19 vaccination., 2022, 10, e004371.		26
5	Exploiting induced vulnerability to overcome PARPi resistance and clonal heterogeneity in BRCA mutant triple-negative inflammatory breast cancer American Journal of Cancer Research, 2022, 12, 337-354.	1.4	O
6	Mechanisms of immunogenic cell death and immune checkpoint blockade therapy. Kaohsiung Journal of Medical Sciences, 2021, 37, 448-458.	1.9	15
7	A Gene Expression Signature to Predict Nucleotide Excision Repair Defects and Novel Therapeutic Approaches. International Journal of Molecular Sciences, 2021, 22, 5008.	4.1	3
8	Combined Inhibition of Rad51 and Wee1 Enhances Cell Killing in HNSCC Through Induction of Apoptosis Associated With Excessive DNA Damage and Replication Stress. Molecular Cancer Therapeutics, 2021, 20, 1257-1269.	4.1	15
9	Replication stress response defects are associated with response to immune checkpoint blockade in nonhypermutated cancers. Science Translational Medicine, 2021, 13, eabe6201.	12.4	19
10	Integrated Genomic Characterization of the Human Immunome in Cancer. Cancer Research, 2020, 80, 4854-4867.	0.9	11
11	PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nature Communications, 2020, 11, 2135.	12.8	114
12	Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress. Molecular Cancer Research, 2020, 18, molcanres.0777.2019.	3.4	8
13	Role of DNA repair defects in predicting immunotherapy response. Biomarker Research, 2020, 8, 23.	6.8	47
14	Proteome Instability Is a Therapeutic Vulnerability in Mismatch Repair-Deficient Cancer. Cancer Cell, 2020, 37, 371-386.e12.	16.8	68
15	BRIT1 dysfunction confers synergistic inhibition of hepatocellular carcinoma by targeting poly (ADP-ribose) polymerases and PI3K. American Journal of Cancer Research, 2020, 10, 1900-1918.	1.4	2
16	Genetic alterations and expression characteristics of ARID1A impact tumor immune contexture and survival in early-onset gastric cancer. American Journal of Cancer Research, 2020, 10, 3947-3972.	1.4	3
17	Nucleostemin reveals a dichotomous nature of genome maintenance in mammary tumor progression. Oncogene, 2019, 38, 3919-3931.	5.9	11
18	Sequential Therapy with PARP and WEE1 Inhibitors Minimizes Toxicity while Maintaining Efficacy. Cancer Cell, 2019, 35, 851-867.e7.	16.8	156

#	Article	IF	CITATIONS
19	PARP inhibitors synergize with gemcitabine by potentiating DNA damage in nonâ€smallâ€cell lung cancer. International Journal of Cancer, 2019, 144, 1092-1103.	5.1	38
20	The Tale of CHD4 in DNA Damage Response and Chemotherapeutic Response. Cancer Research and Cellular Therapeutics, 2019, 3, .	0.0	3
21	Multi-omics analysis reveals neoantigen-independent immune cell infiltration in copy-number driven cancers. Nature Communications, 2018, 9, 1317.	12.8	94
22	BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell, 2018, 33, 401-416.e8.	16.8	215
23	Defective Replication Stress Response Is Inherently Linked to the Cancer Stem Cell Phenotype. Cell Reports, 2018, 23, 2095-2106.	6.4	37
24	CHD4 mutations promote endometrial cancer stemness by activating TGF-beta signaling. American Journal of Cancer Research, 2018, 8, 903-914.	1.4	6
25	A murine preclinical syngeneic transplantation model for breast cancer precision medicine. Science Advances, 2017, 3, e1600957.	10.3	10
26	Rational combination therapy with PARP and MEK inhibitors capitalizes on the rapeutic liabilities in $\langle i \rangle$ RAS $\langle i \rangle$ mutant cancers. Science Translational Medicine, 2017, 9, .	12.4	174
27	Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm. Npj Systems Biology and Applications, 2017, 3, 8.	3.0	55
28	MicroPET/CT Imaging of AXL Downregulation by HSP90 Inhibition in Triple-Negative Breast Cancer. Contrast Media and Molecular Imaging, 2017, 2017, 1-11.	0.8	9
29	The role of Rak in the regulation of stability and function of BRCA1. Oncotarget, 2017, 8, 86799-86815.	1.8	9
30	BRIT1 Gene., 2017,, 699-702.		0
31	Connecting the Dots: From DNA Damage and Repair to Aging. International Journal of Molecular Sciences, 2016, 17, 685.	4.1	53
32	mTOR Inhibitors Suppress Homologous Recombination Repair and Synergize with PARP Inhibitors via Regulating SUV39H1 in BRCA-Proficient Triple-Negative Breast Cancer. Clinical Cancer Research, 2016, 22, 1699-1712.	7.0	95
33	Genomic-Glycosylation Aberrations in Tumor Initiation, Progression and Management. AIMS Medical Science, 2016, 3, 386-416.	0.4	3
34	Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nature Cell Biology, 2015, 17, 1158-1168.	10.3	154
35	Nuclear PTEN tumor-suppressor functions through maintaining heterochromatin structure. Cell Cycle, 2015, 14, 2323-2332.	2.6	38
36	TUSC4 Functions as a Tumor Suppressor by Regulating BRCA1 Stability. Cancer Research, 2015, 75, 378-386.	0.9	24

#	Article	IF	Citations
37	New insights into tumor dormancy: Targeting DNA repair pathways. World Journal of Clinical Oncology, 2015, 6, 80.	2.3	15
38	BRIT1 Gene. , 2015, , 1-4.		0
39	Genome-wide transcriptome profiling of homologous recombination DNA repair. Nature Communications, 2014, 5, 3361.	12.8	182
40	Tumor dormancy: potential therapeutic target in tumor recurrence and metastasis prevention. Experimental Hematology and Oncology, 2013, 2, 29.	5.0	40
41	Zinc finger protein 668 interacts with Tip60 to promote H2AX acetylation after DNA damage. Cell Cycle, 2013, 12, 2033-2041.	2.6	19
42	BRIT1 regulates p53 stability and functions as a tumor suppressor in breast cancer. Carcinogenesis, 2013, 34, 2271-2280.	2.8	13
43	Chromodomain Helicase DNA-binding Protein 4 (CHD4) Regulates Homologous Recombination DNA Repair, and Its Deficiency Sensitizes Cells to Poly(ADP-ribose) Polymerase (PARP) Inhibitor Treatment. Journal of Biological Chemistry, 2012, 287, 6764-6772.	3.4	85
44	DNA damage and breast cancer. World Journal of Clinical Oncology, 2011, 2, 329.	2.3	69
45	DNA Damage Response Is Suppressed by the High Cyclin-dependent Kinase 1 Activity in Mitotic Mammalian Cells. Journal of Biological Chemistry, 2011, 286, 35899-35905.	3.4	31
46	<i>ZNF668</i> Functions as a Tumor Suppressor by Regulating p53 Stability and Function in Breast Cancer. Cancer Research, 2011, 71, 6524-6534.	0.9	26
47	Exploiting the homologous recombination DNA repair network for targeted cancer therapy. World Journal of Clinical Oncology, 2011, 2, 73.	2.3	38
48	BRIT1 Gene., 2011,, 567-570.		0
49	Multiple Roles of BRIT1/MCPH1 in DNA Damage Response, DNA Repair, and Cancer Suppression. Yonsei Medical Journal, 2010, 51, 295.	2.2	32
50	BRIT1/MCPH1 Is Essential for Mitotic and Meiotic Recombination DNA Repair and Maintaining Genomic Stability in Mice. PLoS Genetics, 2010, 6, e1000826.	3.5	86
51	The DNA damage response: Balancing the scale between cancer and ageing. Aging, 2010, 2, 900-907.	3.1	52
52	Exploring Rak tyrosine kinase function in breast cancer. Cell Cycle, 2009, 8, 2360-2364.	2.6	20
53	BRIT1/MCPH1 is a multifunctional DNA damage responsive protein mediating DNA repair-associated chromatin remodeling. Cell Cycle, 2009, 8, 3071-3072.	2.6	12
54	The linkage of chromatin remodeling to genome maintenance: Contribution from a human disease gene BRIT1/MCPH1. Epigenetics, 2009, 4, 457-461.	2.7	7

#	Article	IF	CITATIONS
55	Rak Functions as a Tumor Suppressor by Regulating PTEN Protein Stability and Function. Cancer Cell, 2009, 15, 304-314.	16.8	175
56	DNA Damage Response Pathways in Tumor Suppression and Cancer Treatment. World Journal of Surgery, 2009, 33, 661-666.	1.6	77
57	BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nature Cell Biology, 2009, 11, 865-872.	10.3	175
58	TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nature Structural and Molecular Biology, 2009, 16, 372-379.	8.2	118
59	Differential regulation of centrosome integrity by DNA damage response proteins. Cell Cycle, 2008, 7, 2225-2233.	2.6	52
60	BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell, 2006, 10, 145-157.	16.8	137
61	BRIT1/MCPH1: A Guardian of Genome and an Enemy of Tumors. Cell Cycle, 2006, 5, 2579-2583.	2.6	35
62	BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1–Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15105-15109.	7.1	160
63	Multiple Tumor Suppressor Pathways Negatively Regulate Telomerase. Cell, 2003, 113, 881-889.	28.9	400