
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4233293/publications.pdf Version: 2024-02-01

CHODONG FANC

#	Article	IF	CITATIONS
1	Manipulation of Persistent Free Radicals in Biochar To Activate Persulfate for Contaminant Degradation. Environmental Science & Technology, 2015, 49, 5645-5653.	10.0	684
2	Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs. Environmental Science & amp; Technology, 2013, 47, 4605-4611.	10.0	673
3	Key Role of Persistent Free Radicals in Hydrogen Peroxide Activation by Biochar: Implications to Organic Contaminant Degradation. Environmental Science & Technology, 2014, 48, 1902-1910.	10.0	589
4	Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs. Applied Catalysis B: Environmental, 2013, 129, 325-332.	20.2	420
5	Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals. Chemical Engineering Journal, 2018, 348, 526-534.	12.7	291
6	Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresource Technology, 2015, 176, 210-217.	9.6	284
7	New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. Water Research, 2018, 142, 208-216.	11.3	254
8	Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation. Applied Catalysis B: Environmental, 2017, 214, 34-45.	20.2	247
9	Fe 3 O 4 @β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP). Applied Catalysis B: Environmental, 2016, 188, 113-122.	20.2	235
10	Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study. Journal of Hazardous Materials, 2016, 316, 232-241.	12.4	181
11	Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study. Applied Catalysis B: Environmental, 2017, 202, 1-11.	20.2	175
12	A scientometric review of biochar research in the past 20Âyears (1998–2018). Biochar, 2019, 1, 23-43.	12.6	160
13	Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process. Water Research, 2018, 139, 66-73.	11.3	148
14	Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: An in situ pilot-scale study. Chemical Engineering Journal, 2019, 355, 65-75.	12.7	139
15	Reductive Hexachloroethane Degradation by S ₂ O ₈ ^{•–} with Thermal Activation of Persulfate under Anaerobic Conditions. Environmental Science & Technology, 2018, 52, 8548-8557.	10.0	117
16	Limitations and prospects of sulfate-radical based advanced oxidation processes. Journal of Environmental Chemical Engineering, 2020, 8, 103849.	6.7	116
17	Redox-Active Oxygen-Containing Functional Groups in Activated Carbon Facilitate Microbial Reduction of Ferrihydrite. Environmental Science & Technology, 2017, 51, 9709-9717.	10.0	113
18	Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification. Environmental Science & Technology, 2018, 52, 14352-14361.	10.0	109

#	Article	IF	CITATIONS
19	Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: Kinetics, performance and mechanism studies. Applied Catalysis B: Environmental, 2019, 253, 278-285.	20.2	107
20	Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nanohydroxyapatite. Journal of Soils and Sediments, 2013, 13, 742-752.	3.0	92
21	Synergy between Iron and Selenide on FeSe ₂ (111) Surface Driving Peroxymonosulfate Activation for Efficient Degradation of Pollutants. Environmental Science & Technology, 2020, 54, 15489-15498.	10.0	90
22	Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment. Ecotoxicology and Environmental Safety, 2016, 134, 148-155.	6.0	88
23	A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants. Chemical Engineering Journal, 2021, 403, 126445.	12.7	87
24	New Insights into the Mechanism of the Catalytic Decomposition of Hydrogen Peroxide by Activated Carbon: Implications for Degradation of Diethyl Phthalate. Industrial & Engineering Chemistry Research, 2014, 53, 19925-19933.	3.7	86
25	Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations. Environmental Pollution, 2013, 172, 86-93.	7.5	84
26	Biomass Schiff base polymer-derived N-doped porous carbon embedded with CoO nanodots for adsorption and catalytic degradation of chlorophenol by peroxymonosulfate. Journal of Hazardous Materials, 2020, 384, 121345.	12.4	80
27	Peroxymonosulfate activation by localized electrons of ZnO oxygen vacancies for contaminant degradation. Chemical Engineering Journal, 2021, 416, 128996.	12.7	73
28	Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: Kinetics, products, and reactive species identification. Chemosphere, 2016, 148, 68-76.	8.2	71
29	Mechanism of metal sulfides accelerating Fe(II)/Fe(III) redox cycling to enhance pollutant degradation by persulfate: Metallic active sites vs. reducing sulfur species. Journal of Hazardous Materials, 2021, 404, 124175.	12.4	71
30	A Mechanistic Understanding of Hydrogen Peroxide Decomposition by Vanadium Minerals for Diethyl Phthalate Degradation. Environmental Science & Technology, 2018, 52, 2178-2185.	10.0	69
31	Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. Separation and Purification Technology, 2014, 123, 106-113.	7.9	66
32	Homogenous activation of persulfate by different species of vanadium ions for PCBs degradation. Chemical Engineering Journal, 2017, 323, 84-95.	12.7	61
33	Degradation of 2,4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes. Environmental Science and Pollution Research, 2012, 19, 784-793.	5.3	59
34	The degradation of diethyl phthalate by reduced smectite clays and dissolved oxygen. Chemical Engineering Journal, 2019, 355, 247-254.	12.7	56
35	Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of injection spot. Chemosphere, 2014, 117, 410-418.	8.2	54
36	Immobilization of Cu and Cd in a contaminated soil: one- and four-year field effects. Journal of Soils and Sediments, 2014, 14, 1397-1406.	3.0	51

#	Article	IF	CITATIONS
37	A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash. Scientific Reports, 2016, 6, 33630.	3.3	51
38	Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. Chemosphere, 2020, 242, 125252.	8.2	49
39	Comparison of Persulfate Activation and Fenton Reaction in Remediating an Organophosphorus Pesticides-Polluted Soil. Pedosphere, 2017, 27, 465-474.	4.0	48
40	Surface-bound radical control rapid organic contaminant degradation through peroxymonosulfate activation by reduced Fe-bearing smectite clays. Journal of Hazardous Materials, 2020, 389, 121819.	12.4	48
41	Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. Environmental Science & amp; Technology, 2021, 55, 14281-14293.	10.0	48
42	Oxidation mechanism of As(III) in the presence of polyphenols: New insights into the reactive oxygen species. Chemical Engineering Journal, 2016, 285, 69-76.	12.7	47
43	Efficient activation of peroxymonosulfate by copper sulfide for diethyl phthalate degradation: Performance, radical generation and mechanism. Science of the Total Environment, 2020, 749, 142387.	8.0	44
44	Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments. Environmental Sciences: Processes and Impacts, 2016, 18, 1140-1156.	3.5	42
45	The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and H2O2. Journal of Hazardous Materials, 2018, 357, 483-490.	12.4	41
46	Active iron species driven hydroxyl radicals formation in oxygenation of different paddy soils: Implications to polycyclic aromatic hydrocarbons degradation. Water Research, 2021, 203, 117484.	11.3	40
47	Dry-wet and freeze-thaw aging activate endogenous copper and cadmium in biochar. Journal of Cleaner Production, 2021, 288, 125605.	9.3	39
48	Evaluation of enhanced soil washing process with tea saponin in a peanut oil–water solvent system for the extraction of <scp>PBDEs</scp> / <scp>PCBs</scp> / <scp>PAHs</scp> and heavy metals from an electronic waste site followed by vetiver grass phytoremediation. Journal of Chemical Technology and Biotechnology, 2015, 90, 2027-2035.	3.2	37
49	Effects of clay minerals on diethyl phthalate degradation in Fenton reactions. Chemosphere, 2016, 165, 52-58.	8.2	37
50	Sustainability of in situ remediation of Cu- and Cd-contaminated soils with one-time application of amendments in Guixi, China. Journal of Soils and Sediments, 2016, 16, 1498-1508.	3.0	36
51	Pyrogenic Carbon Initiated the Generation of Hydroxyl Radicals from the Oxidation of Sulfide. Environmental Science & Technology, 2021, 55, 6001-6011.	10.0	36
52	A novel sulfite coupling electro-fenton reactions with ferrous sulfide cathode for anthracene degradation. Chemical Engineering Journal, 2020, 400, 125945.	12.7	35
53	Activation of inorganic peroxides with magnetic graphene for the removal of antibiotics from wastewater. Environmental Science: Nano, 2021, 8, 960-977.	4.3	34
54	Effects of iron (hydr)oxides on the degradation of diethyl phthalate ester in heterogeneous (photo)-Fenton reactions. Journal of Environmental Sciences, 2019, 80, 5-13.	6.1	33

#	Article	IF	CITATIONS
55	Cotransformation of Carbon Dots and Contaminant under Light in Aqueous Solutions: A Mechanistic Study. Environmental Science & Technology, 2019, 53, 6235-6244.	10.0	33
56	An N,S-Anchored Single-Atom Catalyst Derived from Domestic Waste for Environmental Remediation. ACS ES&T Engineering, 2021, 1, 1460-1469.	7.6	33
57	Photochemical characterization of paddy water during rice cultivation: Formation of reactive intermediates for As(III) oxidation. Water Research, 2021, 206, 117721.	11.3	33
58	Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation. Chemosphere, 2016, 150, 71-78.	8.2	32
59	Biochar decreased the bioavailability of Zn to rice and wheat grains: Insights from microscopic to macroscopic scales. Science of the Total Environment, 2018, 621, 160-167.	8.0	32
60	Cu2O@β-cyclodextrin as a synergistic catalyst for hydroxyl radical generation and molecular recognitive destruction of aromatic pollutants at neutral pH. Journal of Hazardous Materials, 2018, 357, 109-118.	12.4	30
61	Fate of As(III) and As(V) during Microbial Reduction of Arsenic-Bearing Ferrihydrite Facilitated by Activated Carbon. ACS Earth and Space Chemistry, 2018, 2, 878-887.	2.7	30
62	Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation. Journal of Soils and Sediments, 2012, 12, 1371-1379.	3.0	27
63	Persistent Free Radicals from Low-Molecular-Weight Organic Compounds Enhance Cross-Coupling Reactions and Toxicity of Anthracene on Amorphous Silica Surfaces under Light. Environmental Science & Technology, 2021, 55, 3716-3726.	10.0	27
64	Transformation of tetracyclines induced by Fe(III)-bearing smectite clays under anoxic dark conditions. Water Research, 2019, 165, 114997.	11.3	26
65	Rapid DDTs degradation by thermally activated persulfate in soil under aerobic and anaerobic conditions: Reductive radicals vs. oxidative radicals. Journal of Hazardous Materials, 2021, 402, 123557.	12.4	25
66	Electrokinetic delivery of anodic in situ generated active chlorine to remediate diesel-contaminated sand. Chemical Engineering Journal, 2018, 337, 499-505.	12.7	24
67	The formation of •OH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As(III) removal. Water Research, 2020, 174, 115631.	11.3	24
68	Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite. Chemosphere, 2020, 253, 126662.	8.2	23
69	In situ stabilization of the adsorbed Co2+ and Ni2+ in rice straw biochar based on LDH and its reutilization in the activation of peroxymonosulfate. Journal of Hazardous Materials, 2021, 416, 126215.	12.4	23
70	Facile ball milling preparation of sulfur-doped carbon as peroxymonosulfate activator for efficient removal of organic pollutants. Journal of Environmental Chemical Engineering, 2021, 9, 106536.	6.7	22
71	Enhanced soil washing process for the remediation of PBDEs/Pb/Cd-contaminated electronic waste site with carboxymethyl chitosan in a sunflower oil–water solvent system and microbial augmentation. Environmental Science and Pollution Research, 2015, 22, 2687-2698.	5.3	21
72	Highly effective removal of BPA with boron-doped graphene shell wrapped FeS2 nanoparticles in electro-Fenton process: Performance and mechanism. Separation and Purification Technology, 2021, 267, 118680.	7.9	20

#	Article	IF	CITATIONS
73	Advances of single-atom catalysts for applications in persulfate-based advanced oxidation technologies. Current Opinion in Chemical Engineering, 2021, 34, 100757.	7.8	20
74	The mechanism of 2-chlorobiphenyl oxidative degradation by nanoscale zero-valent iron in the presence of dissolved oxygen. Environmental Science and Pollution Research, 2018, 25, 2265-2272.	5.3	19
75	Mechanistic Study of the Effects of Agricultural Amendments on Photochemical Processes in Paddy Water during Rice Growth. Environmental Science & Technology, 2022, 56, 4221-4230.	10.0	17
76	Efficient chlorinated alkanes degradation in soil by combining alkali hydrolysis with thermally activated persulfate. Journal of Hazardous Materials, 2022, 438, 129571.	12.4	17
77	A novel electrokinetic remediation with in-situ generation of H2O2 for soil PAHs removal. Journal of Hazardous Materials, 2022, 428, 128273.	12.4	16
78	Nano Fe2O3 embedded in montmorillonite with citric acid enhanced photocatalytic activity of nanoparticles towards diethyl phthalate. Journal of Environmental Sciences, 2021, 101, 248-259.	6.1	14
79	Mechanism of significant enhancement of VO2-Fenton-like reactions by oxalic acid for diethyl phthalate degradation. Separation and Purification Technology, 2021, 279, 119671.	7.9	14
80	Weathered Microplastics Induce Silver Nanoparticle Formation. Environmental Science and Technology Letters, 2022, 9, 179-185.	8.7	14
81	Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity. Journal of Hazardous Materials, 2022, 434, 128861.	12.4	14
82	Nano-α-Fe2O3 enhanced photocatalytic degradation of diethyl phthalate ester by citric Acid/UV (300–400†nm): A mechanism study. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 78-85.	3.9	13
83	The overlooked oxidative dissolution of silver sulfide nanoparticles by thermal activation of persulfate: Processes, mechanisms, and influencing factors. Science of the Total Environment, 2021, 760, 144504.	8.0	13
84	Hydroxylamine promoted hydroxyl radical production and organic contaminants degradation in oxygenation of pyrite. Journal of Hazardous Materials, 2022, 429, 128380.	12.4	13
85	Sorption mechanism of zinc on reed, lignin, and reed- and lignin-derived biochars: kinetics, equilibrium, and spectroscopic studies. Journal of Soils and Sediments, 2018, 18, 2535-2543.	3.0	11
86	Pyridinic- and Pyrrolic Nitrogen in Pyrogenic Carbon Improves Electron Shuttling during Microbial Fe(III) Reduction. ACS Earth and Space Chemistry, 2021, 5, 900-909.	2.7	11
87	Efficient activation of peroxymonosulfate by C ₃ N ₅ doped with cobalt for organic contaminant degradation. Environmental Science: Nano, 2022, 9, 2534-2547.	4.3	8
88	Measuring the bioavailability of polychlorinated biphenyls to earthworms in soil enriched with biochar or activated carbon using triolein-embedded cellulose acetate membrane. Journal of Soils and Sediments, 2016, 16, 527-536.	3.0	7
89	Oxytetracycline induced the redox of iron and promoted the oxidation of As(III). Science of the Total Environment, 2022, 828, 154381.	8.0	6
90	Foliar application of SiO2 and ZnO nanoparticles affected polycyclic aromatic hydrocarbons uptake of Amaranth (Amaranthus tricolor L.): A metabolomics and typical statistical analysis. Science of the Total Environment, 2022, 833, 155258.	8.0	6

#	Article	IF	CITATIONS
91	Rapid As(III) oxidation mediated by activated carbons: Reactive species vs. direct oxidation. Science of the Total Environment, 2022, 822, 153536.	8.0	5
92	Mechanistic insight into sulfite-enhanced diethyl phthalate degradation by hydrogen atom under UV light. Separation and Purification Technology, 2022, 295, 121310.	7.9	5
93	Quantification of the redox properties of microplastics and their effect on arsenite oxidation. Fundamental Research, 2023, 3, 777-785.	3.3	4
94	Response to Comment on "Redox-Active Oxygen-Containing Functional Groups in Activated Carbon Facilitate Microbial Reduction of Ferrihydrite― Environmental Science & Technology, 2018, 52, 4487-4488.	10.0	1
95	Reactive oxygen species formation in thiols solution mediated by pyrogenic carbon under aerobic conditions. Journal of Hazardous Materials, 2021, 415, 125726.	12.4	1