Diletta Sciti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4232824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast Densification of Ultra-High-Temperature Ceramics by Spark Plasma Sintering. International Journal of Applied Ceramic Technology, 2006, 3, 32-40.	2.1	201
2	Spark plasma sintering and mechanical behaviour of ZrC-based composites. Scripta Materialia, 2008, 59, 638-641.	5.2	198
3	Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions. Journal of the European Ceramic Society, 2010, 30, 2155-2164.	5.7	178
4	Densification and Mechanical Behavior of HfC and HfB ₂ Fabricated by Spark Plasma Sintering. Journal of the American Ceramic Society, 2008, 91, 1433-1440.	3.8	168
5	Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. Journal of the European Ceramic Society, 2008, 28, 1899-1907.	5.7	164
6	Effects of MoSi2 additions on the properties of Hf– and Zr–B2 composites produced by pressureless sintering. Scripta Materialia, 2007, 57, 165-168.	5.2	144
7	Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 303-309.	5.6	137
8	Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. Journal of Materials Research, 2005, 20, 922-930.	2.6	121
9	Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol% TaSi ₂ or MoSi ₂ . Journal of Materials Research, 2009, 24, 2056-2065.	2.6	121
10	Title is missing!. Journal of Materials Science, 2000, 35, 3849-3855.	3.7	119
11	Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2–MoSi2 ceramic. Scripta Materialia, 2005, 53, 1297-1302.	5.2	114
12	Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corrosion Science, 2014, 83, 281-291.	6.6	113
13	Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid. Journal of the European Ceramic Society, 2008, 28, 1287-1296.	5.7	99
14	Bonding of zirconia to super alloy with the active brazing technique. Journal of the European Ceramic Society, 2001, 21, 45-52.	5.7	97
15	Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafine powder. Journal of the European Ceramic Society, 2011, 31, 619-627.	5.7	97
16	Densification of ZrB2-TaSi2 and HfB2-TaSi2 Ultra-High-Temperature Ceramic Composites. Journal of the American Ceramic Society, 2011, 94, 1920-1930.	3.8	93
17	Understanding the oxidation behavior of a ZrB2–MoSi2 composite at ultra-high temperatures. Acta Materialia, 2018, 151, 216-228.	7.9	93
18	Sintering and Mechanical Properties of ZrB ₂ –TaSi ₂ and HfB ₂ –TaSi ₂ Ceramic Composites. Journal of the American Ceramic Society, 2008, 91, 3285-3291.	3.8	91

#	Article	IF	CITATIONS
19	Effect of annealing treatments on microstructure and mechanical properties of liquid-phase-sintered silicon carbide. Journal of the European Ceramic Society, 2001, 21, 621-632.	5.7	87
20	High-Density Pressureless-Sintered HfC-Based Composites. Journal of the American Ceramic Society, 2006, 89, 2668-2670.	3.8	86
21	Microstructure and Toughening Mechanisms in Spark Plasmaâ€Sintered ZrB ₂ Ceramics Reinforced by SiC Whiskers or SiCâ€Chopped Fibers. Journal of the American Ceramic Society, 2010, 93, 2384-2391.	3.8	83
22	Spark plasma sintering and hot pressing of ZrB2–MoSi2 ultra-high-temperature ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 475, 108-112.	5.6	82
23	Suitability of ultra-refractory diboride ceramics as absorbers for solar energy applications. Solar Energy Materials and Solar Cells, 2013, 109, 8-16.	6.2	80
24	Efficacy of a ZrB2–SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials. Materials and Design, 2017, 113, 207-213.	7.0	77
25	Solar Thermionicâ€Thermoelectric Generator (ST ² G): Concept, Materials Engineering, and Prototype Demonstration. Advanced Energy Materials, 2018, 8, 1802310.	19.5	77
26	Spectrally selective ultra-high temperature ceramic absorbers for high-temperature solar plants. Journal of Renewable and Sustainable Energy, 2012, 4, .	2.0	76
27	On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments. Scientific Reports, 2018, 8, 9148.	3.3	75
28	Ultra-refractory ceramics for high-temperature solar absorbers. Scripta Materialia, 2011, 65, 775-778.	5.2	73
29	Fabrication and properties of HfB2–MoSi2 composites produced by hot pressing and spark plasma sintering. Journal of Materials Research, 2006, 21, 1460-1466.	2.6	71
30	Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics. Journal of the European Ceramic Society, 2013, 33, 603-614.	5.7	70
31	Microstructure and properties of porous β-SiC templated from soft woods. Journal of the European Ceramic Society, 2004, 24, 533-540.	5.7	66
32	TaB2-based ceramics: Microstructure, mechanical properties and oxidation resistance. Journal of the European Ceramic Society, 2012, 32, 97-105.	5.7	65
33	Hafnium and tantalum carbides for high temperature solar receivers. Journal of Renewable and Sustainable Energy, 2011, 3, .	2.0	64
34	Properties of a Pressureless-Sintered ZrB2-MoSi2 Ceramic Composite. Journal of the American Ceramic Society, 2006, 89, 060427083300081-???.	3.8	61
35	Transmission electron microscopy on Zr- and Hf-borides with MoSi ₂ addition: Densification mechanisms. Journal of Materials Research, 2010, 25, 828-834.	2.6	61
36	Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite. Journal of the European Ceramic Society, 2009, 29, 1809-1815.	5.7	60

#	Article	IF	CITATIONS
37	Porous and dense hafnium and zirconium ultra-high temperature ceramics for solar receivers. Optical Materials, 2013, 36, 163-168.	3.6	60
38	Oxidation behaviour of a continuous carbon fibre reinforced ZrB 2 –SiC composite. Corrosion Science, 2017, 123, 129-138.	6.6	59
39	Sintering Mechanisms of Zirconium and Hafnium Carbides Doped with MoSi ₂ . Journal of the American Ceramic Society, 2009, 92, 1574-1579.	3.8	58
40	Sintering Behavior, Microstructure, and Mechanical Properties: A Comparison among Pressureless Sintered Ultra-Refractory Carbides. Advances in Materials Science and Engineering, 2010, 2010, 1-11.	1.8	54
41	Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering. Journal of Alloys and Compounds, 2016, 663, 351-359.	5.5	53
42	Laser-induced surface drilling of silicon carbide. Applied Surface Science, 2001, 180, 92-101.	6.1	52
43	Processing, sintering and oxidation behavior of SiC fibers reinforced ZrB2 composites. Journal of the European Ceramic Society, 2012, 32, 1933-1940.	5.7	52
44	Strength and toughness: The challenging case of TaC-based composites. Composites Part B: Engineering, 2015, 72, 10-20.	12.0	52
45	Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100°C. Journal of the European Ceramic Society, 2019, 39, 780-787.	5.7	52
46	Ablation tests on HfC- and TaC-based ceramics for aeropropulsive applications. Journal of the European Ceramic Society, 2015, 35, 1401-1411.	5.7	51
47	Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites. Corrosion Science, 2019, 149, 18-28.	6.6	51
48	Design, fabrication and high velocity oxy-fuel torch tests of a Cf-ZrB2- fiber nozzle to evaluate its potential in rocket motors. Materials and Design, 2016, 109, 709-717.	7.0	50
49	SiC chopped fibers reinforced ZrB2: Effect of the sintering aid. Scripta Materialia, 2011, 64, 769-772.	5.2	49
50	Relationships between carbon fiber type and interfacial domain in ZrB 2 -based ceramics. Journal of the European Ceramic Society, 2016, 36, 17-24.	5.7	49
51	Effect of different sintering aids on thermo–mechanical properties and oxidation of SiC fibers – Reinforced ZrB2 composites. Materials Chemistry and Physics, 2013, 137, 834-842.	4.0	46
52	Lanthanum hexaboride for solar energy applications. Scientific Reports, 2017, 7, 718.	3.3	46
53	Microstructure and properties of alumina-SiC nanocomposites prepared from ultrafine powders. Journal of Materials Science, 2002, 37, 3747-3758.	3.7	44
54	Aerothermal behaviour of a SiC fibre-reinforced ZrB2 sharp component in supersonic regime. Journal of the European Ceramic Society, 2012, 32, 1837-1845.	5.7	44

#	Article	IF	CITATIONS
55	Compositional dependence of optical properties of zirconium, hafnium and tantalum carbides for solar absorber applications. Solar Energy, 2016, 131, 199-207.	6.1	44
56	A systematic approach for horizontal and vertical scale up of sintered Ultra-High Temperature Ceramic Matrix Composites for aerospace – Advances and perspectives. Composites Part B: Engineering, 2022, 234, 109709.	12.0	43
57	Tantalum diboride-based ceramics for bulk solar absorbers. Solar Energy Materials and Solar Cells, 2014, 130, 208-216.	6.2	42
58	Effect of a weak fiber interface coating in ZrB2 reinforced with long SiC fibers. Materials and Design, 2015, 88, 610-618.	7.0	42
59	Continuous C fibre composites with a porous ZrB2 Matrix. Materials and Design, 2015, 85, 127-134.	7.0	42
60	Combined effect of SiC chopped fibers and SiC whiskers on the toughening of ZrB2. Ceramics International, 2014, 40, 4819-4826.	4.8	41
61	Microstructure evolution of a Wâ€doped ZrB ₂ ceramic upon highâ€ŧemperature oxidation. Journal of the American Ceramic Society, 2017, 100, 1760-1772.	3.8	41
62	Effect of PAN-based and pitch-based carbon fibres on microstructure and properties of continuous Cf/ZrB2-SiC UHTCMCs. Journal of the European Ceramic Society, 2021, 41, 3045-3050.	5.7	41
63	Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum. Journal of the European Ceramic Society, 2010, 30, 3253-3258.	5.7	40
64	Ultra-High Temperature Ceramics for solar receivers: spectral and high-temperature emittance characterization. Journal of the European Optical Society-Rapid Publications, 0, 7, .	1.9	40
65	Ice templating of ZrB2 porous architectures. Journal of the European Ceramic Society, 2013, 33, 1599-1607.	5.7	40
66	Femtosecond laser treatments to tailor the optical properties of hafnium carbide for solar applications. Solar Energy Materials and Solar Cells, 2015, 132, 460-466.	6.2	40
67	ZrB2-MoSi2 ceramics: A comprehensive overview of microstructure and properties relationships. Part I: Processing and microstructure. Journal of the European Ceramic Society, 2019, 39, 1939-1947.	5.7	40
68	Formation of high entropy metal diborides using arc-melting and combinatorial approach to study quinary and quaternary solid solutions. Journal of the European Ceramic Society, 2020, 40, 588-593.	5.7	40
69	Nanoindentation Characterization of Submicro―and Nanoâ€5ized Liquidâ€Phaseâ€5intered SiC Ceramics. Journal of the American Ceramic Society, 2004, 87, 2101-2107.	3.8	39
70	Tough salami-inspired Cf/ZrB2 UHTCMCs produced by electrophoretic deposition. Journal of the European Ceramic Society, 2018, 38, 403-409.	5.7	39
71	High temperature oxidation of Zr- and Hf-carbides: Influence of matrix and sintering additive. Journal of the European Ceramic Society, 2013, 33, 2867-2878.	5.7	38
72	Influence of SiC content on the oxidation of carbon fibre reinforced ZrB2/SiC composites at 1500 and 1650â€Â°C in air. Journal of the European Ceramic Society, 2018, 38, 3767-3776.	5.7	38

#	Article	IF	CITATIONS
73	Ultra-high-temperature testing of sintered ZrB2-based ceramic composites in atmospheric re-entry environment. International Journal of Heat and Mass Transfer, 2020, 156, 119910.	4.8	38
74	Spark plasma sintering of ultra refractory compounds. Journal of Materials Science, 2008, 43, 6414-6421.	3.7	37
75	Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis. Materials and Design, 2018, 145, 97-107.	7.0	37
76	Nanoindentation characterization of SiC-based ceramics. Journal of the European Ceramic Society, 2007, 27, 1399-1404.	5.7	35
77	Oxidation behaviour of HfB2–15 vol.% TaSi2 at low, intermediate and high temperatures. Scripta Materialia, 2010, 63, 601-604.	5.2	35
78	An overview of ultra-refractory ceramics for thermodynamic solar energy generation at high temperature. Renewable Energy, 2019, 133, 1257-1267.	8.9	35
79	Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers. Journal of the European Ceramic Society, 2015, 35, 4377-4387.	5.7	34
80	Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres. Materials and Design, 2017, 130, 1-7.	7.0	34
81	Introduction to H2020 project C ³ HARME – next generation ceramic composites for combustion harsh environment and space. Advances in Applied Ceramics, 2018, 117, s70-s75.	1.1	34
82	Pressureless sintered in situ toughened ZrB2–SiC platelets ceramics. Journal of the European Ceramic Society, 2011, 31, 2145-2153.	5.7	33
83	From random chopped to oriented continuous SiC fibers–ZrB2 composites. Materials & Design, 2014, 63, 464-470.	5.1	33
84	Optical properties of black and white ZrO2 for solar receiver applications. Solar Energy Materials and Solar Cells, 2015, 140, 477-482.	6.2	33
85	Continuous SiC fibers-ZrB 2 composites. Journal of the European Ceramic Society, 2015, 35, 4371-4376.	5.7	33
86	Process and composition dependence of optical properties of zirconium, hafnium and tantalum borides for solar receiver applications. Solar Energy Materials and Solar Cells, 2016, 155, 368-377.	6.2	33
87	Microstructure, mechanical properties and oxidation behavior of TaC- and HfC-based materials containing short SiC fiber. Ceramics International, 2015, 41, 1367-1377.	4.8	32
88	Effect of surface texturing by femtosecond laser on tantalum carbide ceramics for solar receiver applications. Solar Energy Materials and Solar Cells, 2017, 161, 1-6.	6.2	32
89	High temperature oxidation of ZrC–20%MoSi2 in air for future solar receivers. Solar Energy Materials and Solar Cells, 2011, 95, 2228-2237.	6.2	31
90	Joining of ultra-refractory carbides. Journal of the European Ceramic Society, 2012, 32, 4469-4479.	5.7	31

#	Article	IF	CITATIONS
91	Hard and easy sinterable B4C-TiB2-based composites doped with WC. Journal of the European Ceramic Society, 2018, 38, 3089-3095.	5.7	31
92	Influence of fibre content on the strength of carbon fibre reinforced HfC/SiC composites up to 2100 °C. Journal of the European Ceramic Society, 2019, 39, 3594-3603.	5.7	31
93	A simple route to fabricate strong boride hierarchical composites for use at ultra-high temperature. Composites Part B: Engineering, 2020, 183, 107618.	12.0	31
94	Emissivity, catalycity and microstructural characterization of ZrB2–SiCfiber based UHTC at high temperature in a non-equilibrium air plasma flow. Ceramics International, 2014, 40, 9731-9742.	4.8	30
95	Optical properties of ZrB2 porous architectures. Solar Energy Materials and Solar Cells, 2016, 144, 608-615.	6.2	30
96	Synthesis of group <scp>IV</scp> and V metal diboride nanocrystals via borothermal reduction with sodium borohydride. Journal of the American Ceramic Society, 2018, 101, 2627-2637.	3.8	30
97	Ablation behaviour of ultra-high temperature ceramic matrix composites: Role of MeSi2 addition. Journal of the European Ceramic Society, 2019, 39, 2771-2781.	5.7	30
98	Microstructure and properties of pressureless sintered ZrC-based materials. Journal of Materials Research, 2008, 23, 1882-1889.	2.6	29
99	XPS and AES studies of UHTC ZrB ₂ –SiC–Si ₃ N ₄ treated with solar energy. Surface and Interface Analysis, 2014, 46, 817-822.	1.8	29
100	Influence of Y2O3 addition on the mechanical and oxidation behaviour of carbon fibre reinforced ZrB2/SiC composites. Journal of the European Ceramic Society, 2020, 40, 5067-5075.	5.7	29
101	Binderless WC with high strength and toughness up to 1500â€ [−] °C. Journal of the European Ceramic Society, 2020, 40, 2287-2294.	5.7	29
102	Ceramic surface modifications induced by pulsed laser treatment. Applied Surface Science, 2000, 154-155, 682-688.	6.1	28
103	Transmission electron microscopy on Hf- and Ta-carbides sintered with TaSi2. Journal of the European Ceramic Society, 2011, 31, 3033-3043.	5.7	28
104	Impact of residual stress on thermal damage accumulation, and Young's modulus of fiber-reinforced ultra-high temperature ceramics. Materials and Design, 2018, 160, 803-809.	7.0	28
105	Ti3SiC2-Cf composites by spark plasma sintering: Processing, microstructure and thermo-mechanical properties. Journal of the European Ceramic Society, 2019, 39, 2824-2830.	5.7	28
106	Tyranno SA3 fiber–ZrB2 composites. Part I: Microstructure and densification. Materials & Design, 2015, 65, 1253-1263.	5.1	27
107	Excimer laser-induced microstructural changes of alumina and silicon carbide. Journal of Materials Science, 2000, 35, 3799-3810.	3.7	26
108	Assessment of the high temperature elastic and damping properties of silicon nitrides and carbides with the impulse excitation technique. Journal of the European Ceramic Society, 2002, 22, 2501-2509.	5.7	26

#	Article	IF	CITATIONS
109	Microstructure and Properties of Pressureless Sintered HfB ₂ â€Based Composites with Additions of ZrB ₂ or HfC. Advanced Engineering Materials, 2007, 9, 915-920.	3.5	26
110	Temperature dependence of the dynamic Young's modulus of ZrB2–MoSi2 ultra-refractory ceramic composites. Scripta Materialia, 2010, 62, 831-834.	5.2	26
111	Development of UHTCMCs via water based ZrB2 powder slurry infiltration and polymer infiltration and polymer infiltration and pyrolysis. Journal of the European Ceramic Society, 2020, 40, 5076-5084.	5.7	26
112	Short-term oxidation of a ternary composite in the system AlN–SiC–ZrB2. Journal of the European Ceramic Society, 2005, 25, 1771-1780.	5.7	25
113	Are short Hi-Nicalon SiC fibers a secondary or a toughening phase for ultra-high temperature ceramics?. Materials & Design, 2014, 55, 821-829.	5.1	25
114	Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering. Composites Part B: Engineering, 2021, 216, 108839.	12.0	24
115	Oxidation of <scp>ZrB₂</scp> Ceramics Containing <scp>SiC</scp> as Particles, Whiskers, or Short Fibers. Journal of the American Ceramic Society, 2011, 94, 2796-2799.	3.8	23
116	TEM analysis, mechanical characterization and oxidation resistance of a highly refractory ZrB2 composite. Journal of Alloys and Compounds, 2014, 602, 346-355.	5.5	23
117	Is spark plasma sintering suitable for the densification of continuous carbon fibre - UHTCMCs?. Journal of the European Ceramic Society, 2020, 40, 2597-2603.	5.7	23
118	Tailoring optical properties of surfaces in wide spectral ranges by multi-scale femtosecond-laser texturing: A case-study for TaB2 ceramics. Optical Materials, 2020, 109, 110347.	3.6	23
119	Reactive melt infiltration of carbon fibre reinforced ZrB2/B composites with Zr2Cu. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105973.	7.6	23
120	Additive Manufacturing of Ceramics Enabled by Flash Pyrolysis of Polymer Precursors with Nanoscale Layers. Journal of the American Ceramic Society, 2016, 99, 57-63.	3.8	22
121	Zirconium carbide doped with tantalum silicide: Microstructure, mechanical properties and high temperature oxidation. Materials Chemistry and Physics, 2013, 143, 407-415.	4.0	21
122	Optical properties of boride ultrahigh-temperature ceramics for solar thermal absorbers. Journal of Photonics for Energy, 2014, 4, 045599.	1.3	21
123	Preliminary characterization of ST2G: Solar thermionic-thermoelectric generator for concentrating systems. AIP Conference Proceedings, 2015, , .	0.4	21
124	Tyranno SA3 fiber–ZrB2 composites. Part II: Mechanical properties. Materials & Design, 2015, 65, 1264-1273.	5.1	21
125	Micro-EDM milling of zirconium carbide ceramics. Precision Engineering, 2020, 65, 156-163.	3.4	21
126	Influence of pressure on the oxidation resistance of carbon fiber reinforced ZrB2/SiC composites at 2000 and 2200 °C. Corrosion Science, 2021, 184, 109377.	6.6	21

#	Article	IF	CITATIONS
127	Dry sliding wear behavior of nano-sized SiC pins against SiC and Si3N4 discs. Wear, 2007, 262, 529-535.	3.1	20
128	Toughening effect of non-periodic fiber distribution on crack propagation energy of UHTC composites. Journal of Alloys and Compounds, 2019, 777, 612-618.	5.5	20
129	Highâ€Temperature Resistant Composites in the AlN–SiC–MoSi ₂ System. Journal of the American Ceramic Society, 2003, 86, 1720-1726.	3.8	19
130	Synergy and competition in nano- and micro-design of structural ceramics. Journal of the European Ceramic Society, 2004, 24, 3295-3302.	5.7	19
131	High-Strength and -Toughness Electroconductive SiC-Based Composites. Advanced Engineering Materials, 2006, 8, 997-1001.	3.5	19
132	Microstructural characterization of ZrC-MoSi2 composites oxidized in air at high temperatures. Applied Surface Science, 2013, 283, 751-758.	6.1	19
133	Effect of high temperature oxidation on the radiative properties of HfC-based ceramics. Corrosion Science, 2017, 126, 255-264.	6.6	19
134	Characterization of novel ceramic composites for rocket nozzles in high-temperature harsh environments. International Journal of Heat and Mass Transfer, 2020, 163, 120492.	4.8	19
135	Surface modification and oxidation kinetics of hot-pressed AlN–SiC–MoSi2 electroconductive ceramic composite. Applied Surface Science, 2003, 210, 274-285.	6.1	18
136	Synthesis of nanosized zirconium diboride powder via oxide-borohydride solid-state reaction. Scripta Materialia, 2015, 109, 100-103.	5.2	18
137	Effect of hypersonic flow chemical composition on the oxidation behavior of a super-strong UHTC. Corrosion Science, 2019, 159, 108125.	6.6	18
138	Off-axis damage tolerance of fiber-reinforced composites for aerospace systems. Journal of the European Ceramic Society, 2020, 40, 2691-2698.	5.7	18
139	Disclosing small scale length properties in core-shell structured B4C-TiB2 composites. Materials and Design, 2021, 197, 109204.	7.0	18
140	Spectral emittance of ceramics for high temperature solar receivers. Solar Energy, 2021, 222, 74-83.	6.1	18
141	Significant improvement of the self-protection capability of ultra-high temperature ceramic matrix composites. Corrosion Science, 2021, 189, 109575.	6.6	18
142	Qualification and reusability of long and short fibre-reinforced ultra-refractory composites for aerospace thermal protection systems. Corrosion Science, 2022, 195, 109955.	6.6	18
143	Merging toughness and oxidation resistance in a light ZrB2 composite. Materials and Design, 2019, 183, 108078.	7.0	17
144	ZrB2-MoSi2 ceramics: A comprehensive overview of microstructure and properties relationships. Part II: Mechanical properties. Journal of the European Ceramic Society, 2019, 39, 1948-1954.	5.7	17

#	Article	IF	CITATIONS
145	Improved aero-thermal resistance capabilities of ZrB2-based ceramics in hypersonic environment for increasing SiC content. Corrosion Science, 2021, 178, 109067.	6.6	17
146	Insight into microstructure and flexural strength of ultra-high temperature ceramics enriched SICARBONâ"¢ composite. Materials and Design, 2021, 208, 109888.	7.0	17
147	Properties of ZrB2-Reinforced Ternary Composites. Advanced Engineering Materials, 2004, 6, 775-781.	3.5	16
148	Ultra-high temperature porous graded ceramics for solar energy applications. Journal of the European Ceramic Society, 2019, 39, 72-78.	5.7	16
149	Oxidation behaviour of a pressureless sintered AlN-SiC composite. Journal of Materials Science, 2004, 39, 6965-6973.	3.7	15
150	Effect of Milling on the Mechanical Properties of Chopped SiC Fiber-Reinforced ZrB2. Materials, 2013, 6, 1980-1993.	2.9	15
151	Transient liquid phase bonding of HfC-based ceramics. Journal of Materials Science, 2014, 49, 654-664.	3.7	15
152	Ultra-refractory Diboride Ceramics for Solar Plant Receivers. Energy Procedia, 2014, 49, 468-477.	1.8	15
153	Round Robin Test for the comparison of spectral emittance measurement apparatuses. Solar Energy Materials and Solar Cells, 2019, 191, 476-485.	6.2	15
154	Colored zirconia with high absorbance and solar selectivity. Scripta Materialia, 2020, 186, 147-151.	5.2	15
155	Design of ultra-high temperature ceramic nano-composites from multi-scale length microstructure approach. Composites Part B: Engineering, 2021, 226, 109344.	12.0	15
156	Influence of long term oxidation on the microstructure, mechanical and electrical properties of pressureless sintered AlN–SiC–MoSi2 ceramic composites. Journal of the European Ceramic Society, 2003, 23, 3135-3146.	5.7	14
157	Dark alumina for novel solar receivers. Scripta Materialia, 2020, 176, 58-62.	5.2	14
158	Dry Sliding Wear Behavior of Al ₂ O ₃ –SiC Submicro―and Nanoâ€Composites. Journal of the American Ceramic Society, 2005, 88, 179-183.	3.8	13
159	Ice templating of ZrB2–SiC systems. Ceramics International, 2015, 41, 10324-10330.	4.8	13
160	Experimental set up for characterization of carbide-based materials in propulsion environment. Journal of the European Ceramic Society, 2015, 35, 1715-1723.	5.7	13
161	Surface modifications of carbide ceramics induced by pulsed laser treatments. Applied Physics A: Materials Science and Processing, 1999, 69, S515-S519.	2.3	12
162	Tape casting of AlN–SiC–MoSi 2 composites. Journal of the European Ceramic Society, 2004, 24, 2303-2311.	5.7	12

#	Article	IF	CITATIONS
163	On the toughening mechanisms of MoSi2 reinforced Si3N4 ceramics. Applied Physics A: Materials Science and Processing, 2006, 86, 243-248.	2.3	12
164	Depth-Sensing Indentation Hardness Characterization of HfC-Based Composites. Advanced Engineering Materials, 2007, 9, 389-392.	3.5	12
165	Preparation of UHTCMCs by hybrid processes coupling Polymer Infiltration and Pyrolysis with Hot Pressing and vice versa. Journal of the European Ceramic Society, 2022, 42, 2118-2126.	5.7	12
166	Effects of powder processing on colloidal and microstructural characteristics of β-SiC powders. Materials Chemistry and Physics, 2007, 103, 70-77.	4.0	11
167	Deformation mechanism in graphene nanoplatelet reinforced tantalum carbide using high load in situ indentation. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 270-275.	5.6	11
168	Thermionic emission measurement of sintered lanthanum hexaboride discs and modelling of their solar energy conversion performance. Ceramics International, 2021, 47, 20736-20739.	4.8	11
169	Improvements Offered by Coprecipitation of Sintering Additives on Ultra-Fine SiC Materials. Advanced Engineering Materials, 2005, 7, 152-158.	3.5	10
170	Indentation grid analysis of nanoindentation bulk and in situ properties of ceramic phases. Journal of Materials Science, 2008, 43, 4348-4352.	3.7	10
171	Study of the interactions between HfB2 and Hi-Nicalonâ"¢ fiber. Journal of the European Ceramic Society, 2013, 33, 2879-2888.	5.7	10
172	Effect of the Sintering Additive on Microstructure and Mechanical Properties of <scp><scp>Hi</scp></scp> â€Nicalon <scp>TM</scp> SiC Fibers in a <scp><scp>HfB</scp></scp> ₂ Matrix. Journal of the American Ceramic Society, 2013, 96, 643-650.	3.8	10
173	Effect of MoSi2 Particles on the Fracture Toughness of AlN-, SiC-, and Si3N4-based Ceramics. Journal of Composite Materials, 2007, 41, 2585-2593.	2.4	9
174	Effects of residual stresses on the fracture properties of non-oxide laminated composites. Journal of the European Ceramic Society, 2007, 27, 351-356.	5.7	9
175	Microstructure evolution upon annealing of a ZrB2–SiC composite containing lanthana and magnesia. Journal of the European Ceramic Society, 2013, 33, 403-412.	5.7	9
176	Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering. Materials, 2016, 9, 489.	2.9	9
177	Analysis of residual stresses in ternary electroconductive composites. Applied Physics A: Materials Science and Processing, 2006, 82, 317-324.	2.3	8
178	Microstructure and Nanoindentation Properties of Surface Textures Obtained by Laser Machining and Molding in Silicon Carbide. Advanced Engineering Materials, 2013, 15, 330-335.	3.5	8
179	Improving solar radiation absorbance of high refractory sintered ceramics by fs Ti:sapphire laser surface treatment. Applied Surface Science, 2014, 302, 177-183.	6.1	8
180	Arc-Jet Testing on HfB2 - TaSi2 Models: Effect of the Geometry on the Aerothermal Behaviour~!2009-09-21~!2009-11-06~!2010-04-20~!. The Open Aerospace Engineering Journal, 2010, 3, 10-19.	0.6	8

#	Article	IF	CITATIONS
181	Microstructure and mechanical properties of novel ternary electroconductive ceramics. Journal of Materials Research, 2004, 19, 3343-3352.	2.6	7
182	Advances in Transient-Liquid-Phase Bonding of Ultra-high Temperature ZrC Ceramics. High Temperature Materials and Processes, 2012, 31, 501-511.	1.4	7
183	Synthesis and densification of ultra-fine ZrC powders-effects of C/Zr ratio. International Journal of Refractory Metals and Hard Materials, 2019, 81, 149-154.	3.8	7
184	Thermally stimulated self-healing capabilities of ZrB2-SiC ceramics. Journal of the European Ceramic Society, 2021, 41, 7423-7433.	5.7	7
185	Ultra-High Temperature Ceramic Matrix Composites. , 2021, , 340-352.		7
186	Advancements in carbon fibre reinforced ultra-refractory ceramic composites: Effect of rare earth oxides addition. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106858.	7.6	7
187	Novel ceramic fibre - Zirconium diboride composites for solar receivers in concentrating solar power systems. Composites Part B: Engineering, 2022, 242, 110081.	12.0	7
188	Ultra-High-Temperature Ceramic Matrix Composites in Hybrid Rocket Propulsion Environment. , 2018, , .		6
189	Zirconium diboride-based nanofluids for solar energy applications. Journal of Molecular Liquids, 2021, 322, 114981.	4.9	6
190	Effect of Transition Metal Silicides on Microstructure and Mechanical Properties of Ultra-High Temperature Ceramics. , 2013, , 125-179.		6
191	Coloring zirconium oxide for novel energy saving industrial applications. Renewable Energy, 2022, 190, 223-231.	8.9	6
192	Influence of annealing treatments on microstructure and toughness of liquid-phase-sintered silicon carbide. Journal of Materials Research, 2001, 16, 806-816.	2.6	5
193	Fabrication and residual stresses characterization of novel non-oxide multilayer ceramics. Journal of the European Ceramic Society, 2006, 26, 3415-3423.	5.7	5
194	Residual Stress Investigation in SiC/MoSi2(p) Composites. Advanced Engineering Materials, 2007, 9, 393-399.	3.5	5
195	Processing and Properties of Ultra-Refractory Composites Based on Zr- and Hf-Borides: State of the Art and Perspectives. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 147-160.	0.3	5
196	fs Laser surface nano-structuring of high refractory ceramics to enhance solar radiation absorbance. Applied Physics A: Materials Science and Processing, 2014, 117, 243-251.	2.3	5
197	Ablation behaviour of carbon fibre ultra-high temperature composites at oblique angles of attack. Materials and Design, 2021, 212, 110199.	7.0	5
198	Retained strength of UHTCMCs after oxidation at 2278ÂK. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106523.	7.6	4

#	Article	IF	CITATIONS
199	Production of UHTC Complex Shapes and Architectures. , 2013, , 246-277.		4
200	Microstructure Design of Liquid Phase Sintered Silicon Carbide in Function of the Powders Characteristics. Key Engineering Materials, 2004, 264-268, 1039-1042.	0.4	3
201	Highâ€Temperature Stiffness and Damping Measurements to Monitor the Glassy Intergranular Phase in Liquidâ€Phaseâ€Sintered Silicon Carbides. Journal of the American Ceramic Society, 2005, 88, 2152-2158.	3.8	3
202	Microstructure and properties of an electroconductive SiC-based composite. Journal of Materials Science, 2007, 42, 5570-5575.	3.7	3
203	Slip Casting of a <scp><scp>Si</scp> ₃ <scp>N</scp> ₄ </scp> â€Based System. International Journal of Applied Ceramic Technology, 2012, 9, 246-258.	2.1	3
204	Effect of residual excess carbon on the densification of ultra-fine HfC powder. Journal of the European Ceramic Society, 2020, 40, 1801-1810.	5.7	3
205	Nanoindentation characterisation of HfC-based composites. International Journal of Surface Science and Engineering, 2007, 1, 198.	0.4	2
206	Intrinsic spectral selectivity in ultra-high temperature ceramics for solar applications. , 2011, , .		2
207	Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions. Materials, 2021, 14, 7674.	2.9	2
208	Novel SiC/C composite targets for the production of radioisotopes for nuclear applications. Journal of the European Ceramic Society, 2022, 42, 6750-6756.	5.7	2
209	Analysis of nanoindentation tests on SiC-based ceramics. Philosophical Magazine, 2006, 86, 5321-5329.	1.6	1