RocÃ-o Ponce Ortiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4232697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer solar cells with enhanced fill factors. Nature Photonics, 2013, 7, 825-833.	15.6	887
2	High- <i>k</i> Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors. Chemical Reviews, 2010, 110, 205-239.	23.0	801
3	A Naphthodithiophene-Diketopyrrolopyrrole Donor Molecule for Efficient Solution-Processed Solar Cells. Journal of the American Chemical Society, 2011, 133, 8142-8145.	6.6	474
4	Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals. Nature Chemistry, 2016, 8, 753-759.	6.6	302
5	Bithiopheneimide–Dithienosilole/Dithienogermole Copolymers for Efficient Solar Cells: Information from Structure–Property–Device Performance Correlations and Comparison to Thieno[3,4- <i>c</i>)pyrrole-4,6-dione Analogues. Journal of the American Chemical Society, 2012, 134, 18427-18439.	6.6	257
6	Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 13685-13697.	6.6	232
7	Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structureâ''Property Correlations, Charge Carrier Polarity, and Device Stability. Journal of the American Chemical Society, 2011, 133, 1405-1418.	6.6	231
8	Quinoidal oligothiophenes: new properties behind an unconventional electronic structure. Chemical Society Reviews, 2012, 41, 5672.	18.7	230
9	Combining Electron-Neutral Building Blocks with Intramolecular "Conformational Locks―Affords Stable, High-Mobility P- and N-Channel Polymer Semiconductors. Journal of the American Chemical Society, 2012, 134, 10966-10973.	6.6	220
10	Dialkoxybithiazole: A New Building Block for Head-to-Head Polymer Semiconductors. Journal of the American Chemical Society, 2013, 135, 1986-1996.	6.6	184
11	(Semi)ladder-Type Bithiophene Imide-Based All-Acceptor Semiconductors: Synthesis, Structure–Property Correlations, and Unipolar n-Type Transistor Performance. Journal of the American Chemical Society, 2018, 140, 6095-6108.	6.6	178
12	Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells. Advanced Materials, 2012, 24, 2242-2248.	11.1	158
13	On the Biradicaloid Nature of Long Quinoidal Oligothiophenes: Experimental Evidence Guided by Theoretical Studies. Angewandte Chemie - International Edition, 2007, 46, 9057-9061.	7.2	143
14	Fundamental Performance Limits of Carbon Nanotube Thin-Film Transistors Achieved Using Hybrid Molecular Dielectrics. ACS Nano, 2012, 6, 7480-7488.	7.3	142
15	Organic n-Channel Field-Effect Transistors Based on Arylenediimide-Thiophene Derivatives. Journal of the American Chemical Society, 2010, 132, 8440-8452.	6.6	134
16	Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8341-E8348.	3.3	126
17	Ladderâ€ŧype Heteroarenes: Up to 15 Rings with Five Imide Groups. Angewandte Chemie - International Edition, 2017, 56, 9924-9929.	7.2	105
18	Stable Organic Diradicals Based on Fused Quinoidal Oligothiophene Imides with High Electrical Conductivity. Journal of the American Chemical Society, 2020, 142, 4329-4340.	6.6	95

#	Article	IF	CITATIONS
19	Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers. Journal of the American Chemical Society, 2015, 137, 12565-12579.	6.6	89
20	Alkoxyâ€Functionalized Thienylâ€Vinylene Polymers for Fieldâ€Effect Transistors and Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 2782-2793.	7.8	83
21	Thiophene–Diazine Molecular Semiconductors: Synthesis, Structural, Electrochemical, Optical, and Electronic Structural Properties; Implementation in Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2009, 15, 5023-5039.	1.7	82
22	Versatile α,ï‰â€Disubstituted Tetrathienoacene Semiconductors for High Performance Organic Thinâ€Film Transistors. Advanced Functional Materials, 2012, 22, 48-60.	7.8	82
23	Ladderâ€ŧype Heteroarenes: Up to 15 Rings with Five Imide Groups. Angewandte Chemie, 2017, 129, 10056-10061.	1.6	81
24	Quinoidal Oligothiophenes: Towards Biradical Groundâ€State Species. Chemistry - A European Journal, 2010, 16, 470-484.	1.7	74
25	Distannylated Bithiophene Imide: Enabling Highâ€Performance nâ€Type Polymer Semiconductors with an Acceptor–Acceptor Backbone. Angewandte Chemie - International Edition, 2020, 59, 14449-14457.	7.2	72
26	Ambipolar Organic Fieldâ€Effect Transistors from Crossâ€Conjugated Aromatic Quaterthiophenes; Comparisons with Quinoidal Parent Materials. Advanced Functional Materials, 2009, 19, 386-394.	7.8	71
27	Rational Design of Ambipolar Organic Semiconductors: Is Core Planarity Central to Ambipolarity in Thiophene–Naphthalene Semiconductors?. Chemistry - A European Journal, 2012, 18, 532-543.	1.7	66
28	Phenacyl–Thiophene and Quinone Semiconductors Designed for Solution Processability and Airâ€Stability in High Mobility nâ€Channel Fieldâ€Effect Transistors. Chemistry - A European Journal, 2010, 16, 1911-1928.	1.7	60
29	Exploration of Ground and Excited Electronic States of Aromatic and QuinoidS,S-Dioxide Terthiophenes. Complementary Systems for Enhanced Electronic Organic Materials. Journal of the American Chemical Society, 2006, 128, 10134-10144.	6.6	55
30	The unusual electronic structure of ambipolar dicyanovinyl-substituted diketopyrrolopyrrole derivatives. Journal of Materials Chemistry C, 2014, 2, 6376.	2.7	55
31	Electronic Modulation of Dithienothiophene (DTT) as Ï€-Center of D-Ï€-D Chromophores on Optical and Redox Properties: Analysis by UVâ²Visâ²NIR and Raman Spectroscopies Combined with Electrochemistry and Quantum Chemical DFT Calculations. Journal of the American Chemical Society, 2004, 126, 13363-13376.	6.6	52
32	New Semiconductors Based on 2,2′-Ethyne-1,2-diylbis[3-(alk-1-yn-1-yl)thiophene] for Organic Opto-Electronics. Chemistry of Materials, 2012, 24, 2929-2942.	3.2	50
33	Alternated Quinoid/Aromatic Units in Terthiophenes Building Blocks for Electroactive Narrow Band Gap Polymers. Extended Spectroscopic, Solid State, Electrochemical, and Theoretical Study. Journal of Physical Chemistry B, 2005, 109, 16616-16627.	1.2	48
34	Molecularâ€Shapeâ€Controlled Photovoltaic Performance Probed via Soluble Ï€â€Conjugated Arylacetylenic Semiconductors. Advanced Materials, 2011, 23, 3827-3831.	11.1	46
35	Novel Semiconductors Based on Functionalized Benzo[<i>d</i> , <i>d</i> ′]thieno[3,2- <i>b</i> ;4,5- <i>b</i> ′]dithiophenes and the Effects of Thin Film Growth Conditions on Organic Field Effect Transistor Performance. Chemistry of Materials, 2010, 22, 5031-5041.	3.2	45
36	Vibrational and Quantum-Chemical Study of Nonlinear Optical Chromophores Containing Dithienothiophene as the Electron Relay. Chemistry - A European Journal, 2004, 10, 3805-3816.	1.7	44

#	Article	IF	CITATIONS
37	Magnetic Properties of Quinoidal Oligothiophenes: More Than Good Candidates for Ambipolar Organic Semiconductors?. Advanced Functional Materials, 2006, 16, 531-536.	7.8	42
38	Novel Thiophene–Phenylene–Thiophene Fused Bislactam-Based Donor–Acceptor Type Conjugate Polymers: Synthesis by Direct Arylation and Properties. Macromolecules, 2013, 46, 9220-9230.	2.2	41
39	Multidisciplinary Physicochemical Analysis of Oligothiophenes End-Capped by Nitriles:Â Electrochemistry, UVâ^'Visâ ''Near-IR, IR, and Raman Spectroscopies and Quantum Chemistry. Journal of Physical Chemistry B, 2005, 109, 10115-10125.	1.2	40
40	Very Large Silacylic Substituent Effects on Response in Silole-Based Polymer Transistors. Chemistry of Materials, 2011, 23, 2185-2200.	3.2	38
41	Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in Organic Field Effect Transistors. Journal of Materials Chemistry C, 2013, 1, 1959.	2.7	38
42	Molecular and Electronic‧tructure Basis of the Ambipolar Behavior of Naphthalimide–Terthiophene Derivatives: Implementation in Organic Field‣ffect Transistors. Chemistry - A European Journal, 2013, 19, 12458-12467.	1.7	37
43	Raman Spectroscopy Shows Interchain through Space Charge Delocalization in a Mixed Valence Oligothiophene Cation and in Its ï€-Dimeric Biradicaloid Dication. Journal of the American Chemical Society, 2008, 130, 14028-14029.	6.6	36
44	Azine- and Azole-Functionalized Oligo´ and Polythiophene Semiconductors for Organic Thin-Film Transistors. Materials, 2010, 3, 1533-1558.	1.3	34
45	Mobility versus Alignment of a Semiconducting π-Extended Discotic Liquid-Crystalline Triindole. ACS Applied Materials & Interfaces, 2016, 8, 26964-26971.	4.0	34
46	Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors. Journal of Organic Chemistry, 2016, 81, 11256-11267.	1.7	34
47	New Multiresponsive Chromic Soft Materials: Dynamic Interconversion of Short 2,7â€Dicyanomethylenecarbazoleâ€Based Biradicaloid and the Corresponding Cyclophane Tetramer. Chemistry - A European Journal, 2017, 23, 13776-13783.	1.7	33
48	Magnetic and Conductive Properties of Quinoidal Oligothiophenes. Chemistry of Materials, 2006, 18, 1539-1545.	3.2	32
49	Thiophene- and Selenophene-Based Heteroacenes:  Combined Quantum Chemical DFT and Spectroscopic Raman and UVâ^'Visâ^'NIR Study. Journal of Physical Chemistry B, 2007, 111, 7488-7496.	1.2	32
50	Phenyl- and Thienyl-Ended Symmetric Azomethines and Azines as Model Compounds for n-Channel Organic Field-Effect Transistors: An Electrochemical and Computational Study. Journal of Physical Chemistry C, 2014, 118, 3984-3993.	1.5	30
51	Incisive Structureâ^'Spectroscopic Correlation in Oligothiophenes Functionalized with (±) Inductive/Mesomeric Fluorine Groups:Â Joint Raman and DFT Study. Journal of the American Chemical Society, 2005, 127, 13364-13372.	6.6	29
52	Application of Raman spectroscopy and quantum chemistry for featuring the structure of positively charged species in macrocyclicl€-conjugated diacetylene-bridged oligothiophenes. Journal of Raman Spectroscopy, 2004, 35, 592-599.	1.2	25
53	Hybrid Organic Semiconductors Including Chalcogen Atoms in π-Conjugated Skeletons. Tuning of Optical, Redox, and Vibrational Properties by Heavy Atom Conjugation. Journal of Physical Chemistry A, 2006, 110, 7422-7430.	1.1	25
54	Distannylated Bithiophene Imide: Enabling Highâ€Performance nâ€Type Polymer Semiconductors with an Accentor–Accentor Backbone, Angewandte Chemie, 2020, 132, 14557-14565	1.6	25

#	Article	IF	CITATIONS
55	Alkoxy functionalized benzothiadiazole based donor–acceptor conjugated copolymers for organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5113-5123.	2.7	22
56	Synthesis and Characterization of a Novel Terthiophene-Based Quinodimethane Bearing a 3,4-Ethylenedioxythiophene Central Unit. Journal of Physical Chemistry B, 2005, 109, 22308-22318.	1.2	18
57	Synthesis and Characterization of Three Novel Perfluoro-oligothiophenes Ranging in Length from the Trimer to the Pentamer. Journal of Physical Chemistry B, 2005, 109, 20737-20745.	1.2	16
58	Solution-processed <i>N</i> -trialkylated triindoles for organic field effect transistors. Journal of Materials Chemistry C, 2018, 6, 50-56.	2.7	16
59	Processable High Electron Mobility Ï€â€Copolymers via Mesoscale Backbone Conformational Ordering. Advanced Functional Materials, 2021, 31, 2009359.	7.8	16
60	Studies of Photogenerated Charge Carriers from Donorâ^'Acceptor Interfaces in Organic Field Effect Transistors. Implications for Organic Solar Cells. Journal of Physical Chemistry C, 2010, 114, 20609-20613.	1.5	15
61	Effective interplay of donor and acceptor groups for tuning optoelectronic properties in oligothiophene–naphthalimide assemblies. Journal of Materials Chemistry C, 2020, 8, 15277-15289.	2.7	15
62	Helically Annelated and Cross-Conjugated β-Oligothiophenes: A Fourier Transform Raman Spectroscopic and Quantum Chemical Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 4854-4860.	1.5	14
63	Benzotrithiophene versus Benzo/Naphthodithiophene Building Blocks: The Effect of Starâ€Shaped versus Linear Conjugation on Their Electronic Structures. Chemistry - A European Journal, 2016, 22, 6374-6381.	1.7	14
64	All-Polymer Solar Cells Incorporating Readily Accessible Naphthalene Diimide and Isoindigo Acceptor Polymers for Improved Light Harvesting. Chemistry of Materials, 2022, 34, 3267-3279.	3.2	14
65	Robust Ethylenedioxythiophene–Vinylene Oligomers from Fragile Thiophene–Vinylene Cores: Synthesis and Optical, Chemical and Electrochemical Properties of Multicharged Shapes. Chemistry - A European Journal, 2015, 21, 1713-1725.	1.7	13
66	D–A–D 2 <i>H</i> -benzo[<i>d</i>][1,2,3]triazole derivatives as p-type semiconductors in organic field-effect transistors. RSC Advances, 2018, 8, 21879-21888.	1.7	13
67	Tuning of the Electronic Levels of Oligothiophene–Naphthalimide Assemblies by Chemical Modification. Chemistry - A European Journal, 2016, 22, 13643-13652.	1.7	12
68	Synthesis of D-Ï€-A high-emissive 6-arylalkynyl-1,8-naphthalimides for application in Organic Field-Effect Transistors and optical waveguides. Dyes and Pigments, 2021, 191, 109358.	2.0	12
69	Backbone Configuration and Electronic Property Tuning of Imideâ€Functionalized Ladderâ€Type Heteroarenesâ€Based Polymer Acceptors for Efficient Allâ€Polymer Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	12
70	Microwave Irradiation as a Powerful Tool for the Preparation of n-Type Benzotriazole Semiconductors with Applications in Organic Field-Effect Transistors. Molecules, 2022, 27, 4340.	1.7	10
71	Molecular aggregation of naphthalimide organic semiconductors assisted by amphiphilic and lipophilic interactions: a joint theoretical and experimental study. Physical Chemistry Chemical Physics, 2017, 19, 6206-6215.	1.3	9
72	Carbonylâ€Functionalized Quaterthiophenes: A Study of the Vibrational Raman and Electronic Absorption/Emission Properties Guided by Theoretical Calculations. ChemPhysChem, 2012, 13, 168-176.	1.0	8

#	Article	IF	CITATIONS
73	Stereoisomers of an azine-linked donor–acceptor conjugated polymer: the impact of molecular conformation on electrical performance. RSC Advances, 2016, 6, 44272-44278.	1.7	8
74	Even and odd oligothiophene-bridged bis-naphthalimides for n-type and ambipolar organic field effect transistors. Journal of Materials Chemistry C, 2017, 5, 9439-9450.	2.7	8
75	Spectroscopic and DFT studies of donor-acceptor molecules containing phenylquinoline and phenothiazine moieties in various redox states. International Journal of Quantum Chemistry, 2005, 104, 635-644.	1.0	7
76	Comparing the microstructure and photovoltaic performance of 3 perylene imide acceptors with similar energy levels but different packing tendencies. Journal of Materials Chemistry C, 2022, 10, 1698-1710.	2.7	7
77	A Practical Spectroscopic and Theoretical Approach To Study the Electrochromism in Molecular-Based Materials:  The Case of a Family of Dendrimerlike Poly(6-azulenylethenyl)benzenes. Journal of Physical Chemistry B, 2004, 108, 18463-18471.	1.2	6
78	FT-Raman spectroscopic study, aided by quantum chemical DFT calculations, of a series of oligothiophenes end-capped by nitriles. Journal of Molecular Structure, 2005, 744-747, 403-409.	1.8	6
79	Fourier Transform Raman and DFT Study of Three Annulated Oligothiophenes with Different Molecular Shapes. ChemPhysChem, 2007, 8, 745-750.	1.0	6
80	Electronic Studies on Oligothienylenevinylenes: Understanding the Nature of Their Ground and Excited Electronic States. ChemPhysChem, 2009, 10, 1901-1910.	1.0	6
81	Perfluoroarene units in distyryl-oligothiophene analogues: An efficient electron density confinement preventing n-type transport in organic thin film transistors. Synthetic Metals, 2012, 162, 857-861.	2.1	6
82	Sonochemical Synthesis of Optically Tuneable Conjugated Polymer Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1700322.	1.2	6
83	Ladder-type bithiophene imide-based organic semiconductors: understanding charge transport mechanisms in organic field effect transistors. Journal of Materials Chemistry C, 2020, 8, 15759-15770.	2.7	6
84	Fluorene-Based Donor-Acceptor Copolymers Containing Functionalized Benzotriazole Units: Tunable Emission and their Electrical Properties. Polymers, 2020, 12, 256.	2.0	6
85	V-shaped pyranylidene/triphenylamine-based chromophores with enhanced photophysical, electrochemical and nonlinear optical properties. Materials Advances, 2021, 2, 4255-4263.	2.6	6
86	Combined theoretical and spectroscopic Raman study of 3,4-ethylenedioxy and S,S-dioxide substituted terthiophenes and their parent polymers. Journal of Molecular Structure, 2005, 744-747, 551-556.	1.8	5
87	Pushâ^'Pull Bithienyl Chromophore with an Unusual Transverse Path of Conjugation. Journal of Physical Chemistry A, 2007, 111, 841-851.	1.1	5
88	Toward n-channel organic thin film transistors based on a distyryl-bithiophene derivatives. Tetrahedron, 2012, 68, 4664-4671.	1.0	5
89	Extending Hexaazatriphenylene with Mono-/Bithiophenes in Acceptor–Donor Diads and Acceptor–Donor–Acceptor Triads. Journal of Physical Chemistry C, 2016, 120, 23276-23285.	1.5	5
90	Synthesis and electronic properties of nitrogen-doped π-extended polycyclic aromatic dicarboximides with multiple redox processes. Journal of Materials Chemistry C, 0, , .	2.7	5

#	Article	IF	CITATIONS
91	Synthesis and electronic properties of pyridine end-capped cyclopentadithiophene-vinylene oligomers. RSC Advances, 2020, 10, 41264-41271.	1.7	4
92	Oligothiophene-Naphthalimide Hybrids Connected through Rigid and Conjugated Linkers in Organic Electronics: An Overview. Electronic Materials, 2021, 2, 222-252.	0.9	4
93	Perfluorination of tetracene: effects on the optical gap and electron-acceptor properties. An electrochemical, theoretical DFT, and Raman spectroscopic study. , 2006, , .		3
94	Functionalized Crystalline N-Trimethyltriindoles: Counterintuitive Influence of Peripheral Substituents on Their Semiconducting Properties. Molecules, 2022, 27, 1121.	1.7	2
95	Vibrational and Quantum-Chemical Study of Nonlinear Optical Chromophores Containing Dithienothiophene as the Electron Relay. Chemistry - A European Journal, 2004, 10, 3848-3848.	1.7	0
96	Novel semiconductors based on functionalized benzo[d,d']thieno[3,2- b ;4,5- b']dithiophenes (BTDTs) and the effects of thin film growth conditions on organic field effect transistor performance. Proceedings of SPIE, 2010, , .	0.8	0
97	Naphthodithiophene-Diketopyrrolopyrrole Small Molecule Donors for Efficient Solution-Processed Solar Cells. Materials Research Society Symposia Proceedings, 2012, 1390, 34.	0.1	Ο
98	Polymer Solar Cells: Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells (Adv. Mater. 17/2012). Advanced Materials, 2012, 24, 2362-2362.	11.1	0
99	Rücktitelbild: Ladderâ€ŧype Heteroarenes: Up to 15 Rings with Five Imide Groups (Angew. Chem. 33/2017). Angewandte Chemie, 2017, 129, 10132-10132.	1.6	0
100	Tobin Marks' 75th birthday. A celebration of a career devoted to materials chemistry. Journal of Materials Chemistry C, 2020, 8, 14979-14982.	2.7	0