List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4232599/publications.pdf Version: 2024-02-01

FUN-LAF DADK

#	Article	IF	CITATIONS
1	A novel hybrid difference method for an elliptic equation. Applied Mathematics and Computation, 2022, 415, 126702.	2.2	1
2	Staggered DG Method with Small Edges for Darcy Flows in Fractured Porous Media. Journal of Scientific Computing, 2022, 90, 1.	2.3	3
3	A staggered cell-centered DG method for the biharmonic Steklov problem on polygonal meshes: A priori and a posteriori analysis. Computers and Mathematics With Applications, 2022, 117, 216-228.	2.7	0
4	A Staggered Discontinuous Galerkin Method for Quasi-Linear Second Order Elliptic Problems of Nonmonotone Type. Computational Methods in Applied Mathematics, 2022, .	0.8	0
5	Staggered DG Method for Coupling of the Stokes and DarcyForchheimer Problems. SIAM Journal on Numerical Analysis, 2021, 59, 1-31.	2.3	11
6	Morley finite element methods for the stationary quasi-geostrophic equation. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113639.	6.6	4
7	Novel Adaptive Hybrid Discontinuous Galerkin Algorithms for Elliptic Problems. Computational Methods in Applied Mathematics, 2021, 21, 929-951.	0.8	1
8	Multiscale mortar mixed domain decomposition approximations of nonlinear parabolic equations. Computers and Mathematics With Applications, 2021, 97, 375-385.	2.7	3
9	A Nitsche-type variational formulation for the shape deformation of a single component vesicle. Computer Methods in Applied Mechanics and Engineering, 2020, 359, 112661.	6.6	2
10	A New Hybrid Staggered Discontinuous Galerkin Method on General Meshes. Journal of Scientific Computing, 2020, 82, 1.	2.3	10
11	Multiscale mortar expanded mixed discretization of nonlinear elliptic problems. Applied Mathematics and Computation, 2020, 371, 124932.	2.2	0
12	A Staggered Cell-Centered DG Method for Linear Elasticity on Polygonal Meshes. SIAM Journal of Scientific Computing, 2020, 42, A2158-A2181.	2.8	8
13	Convergence of Multi-level Algorithms for a Class of Nonlinear Problems. Journal of Scientific Computing, 2020, 84, 1.	2.3	1
14	Staggered DG Methods for the Pseudostress-Velocity Formulation of the Stokes Equations on General Meshes. SIAM Journal of Scientific Computing, 2020, 42, A2537-A2560.	2.8	6
15	Staggered discontinuous Galerkin methods for the Helmholtz equation with large wave number. Computers and Mathematics With Applications, 2020, 80, 2676-2690.	2.7	3
16	A lowest-order staggered DG method for the coupled Stokes–Darcy problem. IMA Journal of Numerical Analysis, 2020, 40, 2871-2897.	2.9	13
17	A priori and a posteriori error analysis of a staggered discontinuous Galerkin method for convection dominant diffusion equations. Journal of Computational and Applied Mathematics, 2019, 346, 63-83.	2.0	31
18	A staggered DG method of minimal dimension for the Stokes equations on general meshes. Computer Methods in Applied Mechanics and Engineering, 2019, 345, 854-875.	6.6	19

#	Article	IF	CITATIONS
19	Error estimates of B-spline based finite-element methods for the stationary quasi-geostrophic equations of the ocean. Computer Methods in Applied Mechanics and Engineering, 2018, 335, 255-272.	6.6	6
20	Analysis of multiscale mortar mixed approximation of nonlinear elliptic equations. Computers and Mathematics With Applications, 2018, 75, 401-418.	2.7	8
21	Space-Time Adaptive Methods for the Mixed Formulation of a Linear Parabolic Problem. Journal of Scientific Computing, 2018, 74, 1725-1756.	2.3	4
22	CO-discontinuous Galerkin methods for a wind-driven ocean circulation model: Two-grid algorithm. Computer Methods in Applied Mechanics and Engineering, 2018, 328, 321-339.	6.6	7
23	Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method. Journal of Scientific Computing, 2018, 75, 1079-1101.	2.3	13
24	Optimal error estimates for the pseudostress formulation of the Navier–Stokes equations. Applied Mathematics Letters, 2018, 78, 24-30.	2.7	3
25	A unified framework for two-grid methods for a class of nonlinear problems. Calcolo, 2018, 55, 1.	1.1	3
26	Fully computable bounds for a staggered discontinuous Galerkin method for the Stokes equations. Computers and Mathematics With Applications, 2018, 75, 4115-4134.	2.7	8
27	C0 interior penalty methods for a dynamic nonlinear beam model. Applied Mathematics and Computation, 2018, 339, 685-700.	2.2	3
28	A Staggered Discontinuous Galerkin Method of Minimal Dimension on Quadrilateral and Polygonal Meshes. SIAM Journal of Scientific Computing, 2018, 40, A2543-A2567.	2.8	19
29	Hybrid Spectral Difference Methods for an Elliptic Equation. Computational Methods in Applied Mathematics, 2017, 17, 253-267.	0.8	10
30	Convergence of natural adaptive least squares finite element methods. Numerische Mathematik, 2017, 136, 1097-1115.	1.9	14
31	High-order discontinuous Galerkin methods with Lagrange multiplier for hyperbolic systems of conservation laws. Computers and Mathematics With Applications, 2017, 73, 1945-1974.	2.7	6
32	A <mml:math <br="" altimg="si10.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0Galerkin method for the stationary quasi-geostrophic equations of the ocean. Computer Methods in Applied Mechanics and Engineering, 2016, 300, 225-244.</mml:mn></mml:mrow></mml:msup></mml:math>	nml:mn> <td>ıml:mrow></td>	ıml:mrow>
33	Multigrid Optimization Methods for the Optimal Control of Convection–Diffusion Problems with Bilinear Control. Journal of Optimization Theory and Applications, 2016, 168, 510-533.	1.5	14
34	A hybrid discontinuous Galerkin method for advection–diffusion–reaction problems. Applied Numerical Mathematics, 2015, 95, 292-303.	2.1	12
35	Asymptotically exact a posteriori error estimators for first-order div least-squares methods in local and global L2 norm. Computers and Mathematics With Applications, 2015, 70, 648-659.	2.7	7
36	Convergence and Optimality of Adaptive Least Squares Finite Element Methods. SIAM Journal on Numerical Analysis, 2015, 53, 43-62.	2.3	28

#	Article	IF	CITATIONS
37	Dynamic frictionless contact of a nonlinear beam with two stops. Applicable Analysis, 2015, 94, 1355-1379.	1.3	3
38	Domain decomposition preconditioning for elliptic problems with jumps in coefficients. Computers and Mathematics With Applications, 2014, 68, 2292-2313.	2.7	0
39	A hybridized finite element method for the Stokes problem. Computers and Mathematics With Applications, 2014, 68, 2222-2232.	2.7	12
40	AN UPSTREAM PSEUDOSTRESS-VELOCITY MIXED FORMULATION FOR THE OSEEN EQUATIONS. Bulletin of the Korean Mathematical Society, 2014, 51, 267-285.	0.3	3
41	TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS. Journal of the Korean Mathematical Society, 2014, 51, 267-288.	0.4	16
42	A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS. Bulletin of the Korean Mathematical Society, 2014, 51, 1655-1668.	0.3	0
43	New locally conservative finite element methods on a rectangular mesh. Numerische Mathematik, 2013, 123, 97-119.	1.9	14
44	A flexible numerical approach for quantification of epistemic uncertainty. Journal of Computational Physics, 2013, 240, 211-224.	3.8	23
45	Superconvergent discontinuous Galerkin methods for nonlinear elliptic equations. Mathematics of Computation, 2013, 82, 1297-1335.	2.1	14
46	Numerical Experiments for the ArnoldWinther Mixed Finite Elements for the Stokes Problem. SIAM Journal of Scientific Computing, 2012, 34, A2267-A2287.	2.8	8
47	A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem. SIAM Journal on Numerical Analysis, 2011, 49, 2501-2523.	2.3	44
48	A posteriori error estimators for the first-order least-squares finite element method. Journal of Computational and Applied Mathematics, 2010, 235, 293-300.	2.0	5
49	A Hybrid Discontinuous Galerkin Method for Elliptic Problems. SIAM Journal on Numerical Analysis, 2010, 48, 1968-1983.	2.3	25
50	A Priori and A Posteriori Analysis of Mixed Finite Element Methods for Nonlinear Elliptic Equations. SIAM Journal on Numerical Analysis, 2010, 48, 1186-1207.	2.3	23
51	Nonconforming cell boundary element methods for elliptic problems on triangular mesh. Applied Numerical Mathematics, 2008, 58, 800-814.	2.1	14
52	A posteriori error estimators for the upstream weighting mixed methods for convection diffusion problems. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 806-820.	6.6	26
53	Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - Series B, 2008, 10, 873-886.	0.9	1
54	Cell boundary element methods for elliptic problems. Hokkaido Mathematical Journal, 2007, 36, .	0.3	1

#	Article	IF	CITATIONS
55	A posteriori error estimator for expanded mixed hybrid methods. Numerical Methods for Partial Differential Equations, 2007, 23, 330-349.	3.6	27
56	A MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN POROUS MEDIA. Journal of the Korean Mathematical Society, 2007, 44, 1103-1119.	0.4	31
57	Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities. Computers and Mathematics With Applications, 2006, 51, 793-804.	2.7	6
58	Cell boundary element methods for convection-diffusion equations. Communications on Pure and Applied Analysis, 2006, 5, 309-319.	0.8	3
59	Mixed finite element methods for generalized Forchheimer flow in porous media. Numerical Methods for Partial Differential Equations, 2005, 21, 213-228.	3.6	70
60	A cell boundary element method for elliptic problems. Numerical Methods for Partial Differential Equations, 2005, 21, 496-511.	3.6	6
61	Electrical conductivity imaging using a variational method in B z -based MREIT. Inverse Problems, 2005, 21, 969-980.	2.0	18
62	Static conductivity imaging using variational gradientBzalgorithm in magnetic resonance electrical impedance tomography. Physiological Measurement, 2004, 25, 257-269.	2.1	70
63	Mixed finite element domain decomposition for nonlinear parabolic problems. Computers and Mathematics With Applications, 2000, 40, 1061-1070.	2.7	11
64	Asymptotic behavior for an SIS epidemic model and its approximation. Nonlinear Analysis: Theory, Methods & Applications, 1999, 35, 797-814.	1.1	29
65	Fully discrete mixed finite element approximations for non-Darcy flows in porous media. Computers and Mathematics With Applications, 1999, 38, 113-129.	2.7	44
66	Characteristic finite element methods for diffusion epidemic models with age-structured populations. Applied Mathematics and Computation, 1998, 97, 55-70.	2.2	7
67	Splitting methods for the numerical approximation of some models of age-structured population dynamics and epidemiology. Applied Mathematics and Computation, 1997, 87, 69-93.	2.2	24
68	Mixed methods of nonlinear second-order elliptic problems in three variables. Numerical Methods for Partial Differential Equations, 1996, 12, 41-57.	3.6	6
69	TheP-version of the mixed-finite element method for nonlinear second-order elliptic problems. Numerical Methods for Partial Differential Equations, 1996, 12, 1-11.	3.6	3
70	Mixed finite-element methods for Hamilton-Jacobi-Bellman-type equations. IMA Journal of Numerical Analysis, 1996, 16, 399-412.	2.9	14
71	A primal hybrid finite element method for a strongly nonlinear second-order elliptic problem. Numerical Methods for Partial Differential Equations, 1995, 11, 61-75.	3.6	7
72	An upwind scheme for a nonlinear model in age-structured population dynamics. Computers and Mathematics With Applications, 1995, 30, 5-17.	2.7	27

#	Article	IF	CITATIONS
73	Mixed approximation of a population diffusion equation. Computers and Mathematics With Applications, 1995, 30, 23-33.	2.7	28
74	A mixed finite element method for a strongly nonlinear second-order elliptic problem. Mathematics of Computation, 1995, 64, 973-988.	2.1	36
75	Mixed Finite Element Methods for Nonlinear Second-Order Elliptic Problems. SIAM Journal on Numerical Analysis, 1995, 32, 865-885.	2.3	79
76	Analysis of hybrid discontinuous Galerkin methods for linearized Navier–Stokes equations. Numerical Methods for Partial Differential Equations, 0, , .	3.6	1
77	Error analysis for the pseudostress formulation of unsteady Stokes problem. Numerical Algorithms, 0, , .	1.9	0