Marco CavagliÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4232364/publications.pdf

Version: 2024-02-01

268 papers 66,588 citations

88 h-index 256 g-index

273 all docs

273 docs citations

times ranked

273

18439 citing authors

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
8	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
12	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
13	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
14	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1/4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
15	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
16	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	8.1	971
17	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
18	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956

#	Article	IF	CITATIONS
19	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
20	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> ⊙</mml:mtext></mml:mrow></mml:math> . Physical Review Letters, 2020, 125, 101102.	nml znt ext:	> < n &356 :msub>
21	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
22	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
23	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
24	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
25	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	6.5	716
26	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
27	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
28	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
29	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
30	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
31	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
32	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
33	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	3.0	453
34	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
35	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
36	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406

#	Article	IF	Citations
37	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
38	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
39	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103 , .	1.6	338
40	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
41	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
42	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
43	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
44	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
45	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
46	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
47	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
48	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgoâ $\in^{\mathbb{M}}$ s third observing run. Physical Review D, 2021, 104, .	1.6	192
49	BLACK HOLE AND BRANE PRODUCTION IN TEV GRAVITY: A REVIEW. International Journal of Modern Physics A, 2003, 18, 1843-1882.	0.5	191
50	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
51	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
52	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
53	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
54	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166

#	Article	IF	CITATIONS
55	Will we observe black holes at the LHC?. Classical and Quantum Gravity, 2003, 20, L205-L212.	1.5	156
56	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
57	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
58	Matched filtering and parameter estimation of ringdown waveforms. Physical Review D, 2007, 76, .	1.6	153
59	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
60	Ergoregion instability of ultracompact astrophysical objects. Physical Review D, 2008, 77, .	1.6	144
61	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
62	(Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle. General Relativity and Gravitation, 2005, 37, 1255-1262.	0.7	140
63	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
64	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
65	How classical are TeV-scale black holes?. Classical and Quantum Gravity, 2004, 21, 4511-4522.	1.5	126
66	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
67	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	1.6	120
68	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	0.7	120
69	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
70	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
71	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
72	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109

#	Article	IF	Citations
73	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
74	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
75	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
76	Hawking emission of gravitons in higher dimensions: non-rotating black holes. Journal of High Energy Physics, 2006, 2006, 021-021.	1.6	105
77	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	105
78	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	1.6	104
79	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
80	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
81	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
82	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
83	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
84	Black Hole Particle Emission in Higher-Dimensional Spacetimes. Physical Review Letters, 2006, 96, 071301.	2.9	95
85	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
86	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
87	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
88	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
89	Enhancing gravitational-wave science with machine learning. Machine Learning: Science and Technology, 2021, 2, 011002.	2.4	91
90	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90

#	Article	IF	Citations
91	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
92	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
93	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
94	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	2.9	87
95	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
96	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
97	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
98	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
99	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
100	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	2.9	83
101	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	1.6	79
102	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	1.6	78
103	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
104	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
105	Gravitational energy loss in high energy particle collisions: Ultrarelativistic plunge into a multidimensional black hole. Physical Review D, 2004, 69, .	1.6	73
106	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
107	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	7 3
108	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73

#	Article	IF	CITATIONS
109	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
110	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
111	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
112	Classification methods for noise transients in advanced gravitational-wave detectors. Classical and Quantum Gravity, 2015, 32, 215012.	1.5	69
113	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
114	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
115	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69
116	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
117	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
118	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
119	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
120	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
121	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
122	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
123	HAMILTONIAN FORMALISM FOR BLACK HOLES AND QUANTIZATION. International Journal of Modern Physics D, 1995, 04, 661-672.	0.9	63
124	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
125	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
126	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	1.6	62

#	Article	IF	Citations
127	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
128	Instability of hyper-compact Kerr-like objects. Classical and Quantum Gravity, 2008, 25, 195010.	1.5	60
129	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
130	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	1.6	60
131	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
132	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
133	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
134	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60
135	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
136	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59
137	Brane factories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 551, 1-6.	1.5	57
138	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
139	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
140	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	1.6	54
141	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
142	TeV black hole fragmentation and detectability in extensive air showers. Physical Review D, 2003, 68, .	1.6	52
143	Catfish: A Monte Carlo simulator for black holes at the LHC. Computer Physics Communications, 2007, 177, 506-517.	3.0	52
144	Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data. Classical and Quantum Gravity, 2017, 34, 034002.	1.5	52

#	Article	IF	Citations
145	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
146	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100 , .	1.6	52
147	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
148	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
149	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
150	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
151	Methods for reducing false alarms in searches for compact binary coalescences in LIGO data. Classical and Quantum Gravity, 2010, 27, 165023.	1.5	46
152	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
153	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
154	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	1.6	46
155	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	1.6	45
156	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	1.6	45
157	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
158	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
159	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	1.6	43
160	What we (don't) know about black-hole formation in high-energy collisions. Classical and Quantum Gravity, 2005, 22, L61-L69.	1.5	42
161	COMPACT OBJECT COALESCENCE RATE ESTIMATION FROM SHORT GAMMA-RAY BURST OBSERVATIONS. Astrophysical Journal, 2013, 767, 140.	1.6	42
162	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42

#	Article	IF	Citations
163	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104 , .	1.6	42
164	Black hole multiplicity at particle colliders (Do black holes radiate mainly on the brane?). Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 569, 7-13.	1.5	41
165	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
166	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	1.6	39
167	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	1.6	38
168	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
169	HAMILTONIAN FORMALISM FOR BLACK HOLES AND QUANTIZATION II. International Journal of Modern Physics D, 1996, 05, 227-250.	0.9	36
170	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Modeâ€" <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.	2.9	36
171	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
172	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
173	Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era. Physical Review D, 2021, 104, .	1.6	35
174	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
175	Finding the Origin of Noise Transients in LIGO Data with Machine Learning. Communications in Computational Physics, 2019, 25, .	0.7	33
176	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	33
177	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	1.6	33
178	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	32
179	Search for Gravitational Waves Associated with $<$ mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> $<$ mml:mi> $<$ /mml:math>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.	2.9	32
180	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32

#	Article	IF	Citations
181	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
182	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	3.0	32
183	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	2.1	32
184	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
185	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
186	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105, .	1.6	31
187	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
188	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
189	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
190	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
191	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	1.6	29
192	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
193	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	1.6	27
194	Geometrodynamical formulation of two-dimensional dilaton gravity. Physical Review D, 1999, 59, .	1.6	26
195	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
196	Two-dimensional black holes as open strings: a new realization of the ADS/CFT correspondence. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 499, 315-320.	1.5	24
197	Open strings, 2D gravity, and AdS/CFT correspondence. Physical Review D, 2001, 63, .	1.6	24
198	Stability of naked singularities and algebraically special modes. Physical Review D, 2006, 74, .	1.6	24

#	Article	IF	CITATIONS
199	Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach. Machine Learning: Science and Technology, 2020, 1, 015005.	2.4	24
200	Uncertainties in limits on TeV-gravity from neutrino-induced showers. Astroparticle Physics, 2005, 22, 377-385.	1.9	22
201	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	22
202	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
203	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	1.6	21
204	A SCHRÃ-DINGER EQUATION FOR MINIUNIVERSES. International Journal of Modern Physics A, 1995, 10, 611-633.	0.5	20
205	Simulations of black hole air showers in cosmic ray detectors. Physical Review D, 2006, 73, .	1.6	20
206	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	1.6	20
207	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
208	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
209	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	19
210	Quantization of the string inspired dilaton gravity and the Birkhoff theorem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 424, 265-270.	1.5	18
211	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
212	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	1.6	18
213	Time Gauge Fixing and Hilbert Space in Quantum String Cosmology. General Relativity and Gravitation, 1997, 29, 773-787.	0.7	17
214	Signatures of black holes at the LHC. Journal of High Energy Physics, 2007, 2007, 055-055.	1.6	17
215	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
216	Quantum gravitational corrections to black hole geometries. Physical Review D, 2002, 65, .	1.6	16

#	Article	IF	CITATIONS
217	TensorFlow enabled genetic programming. , 2017, , .		15
218	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	1.6	15
219	Essay: A New Era in High-Energy Physics. General Relativity and Gravitation, 2002, 34, 2037-2042.	0.7	14
220	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 ${\hat a} {\in} ``2013.$ Physical Review D, 2016, 93, .	1.6	14
221	Canonical and path-integral quantization of string cosmology models. Classical and Quantum Gravity, 1999, 16, 1401-1415.	1.5	13
222	Jet Geometry and Rate Estimate of Coincident Gamma-Ray Burst and Gravitational-wave Observations. Astrophysical Journal, 2019, 880, 55.	1.6	13
223	WORMHOLE SOLUTIONS IN THE KANTOWSKI-SACHS SPACE-TIME. Modern Physics Letters A, 1994, 09, 1897-1903.	0.5	12
224	Cosmological and wormhole solutions in low-energy effective string theory. Physical Review D, 1994, 50, 6435-6443.	1.6	12
225	Quantum gravity corrections to the Schwarzschild mass. Physical Review D, 2000, 61, .	1.6	12
226	Canonical and quantum FRW cosmological solutions in M-theory. Classical and Quantum Gravity, 2001, 18, 95-120.	1.5	12
227	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
228	Solvable model of two-dimensional dilaton gravity coupled to a massless scalar field. Physical Review D, 1998, 57, 5295-5298.	1.6	11
229	Gravitational Larmor formula in higher dimensions. Physical Review D, 2007, 75, .	1.6	11
230	Two-dimensional dS/CFT correspondence. Physical Review D, 2002, 66, .	1.6	10
231	Two-Dimensional Correlation Function of Binary Black Hole Coalescences. Universe, 2020, 6, 93.	0.9	10
232	Two-dimensional reduced theory and general static solution for uncharged black p-branes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 413, 287-292.	1.5	9
233	Approximately self-similar critical collapse in $2+1$ dimensions. Physical Review D, 2004, 70, .	1.6	9
234	Resolution of Nearly Mass Degenerate Higgs Bosons and Production of Black Hole Systems of Known Mass at a Muon Collider. International Journal of Modern Physics A, 2005, 20, 3409-3412.	0.5	9

#	Article	IF	CITATIONS
235	ON A QUANTUM MINIUNIVERSE FILLED WITH YANG-MILLS RADIATION. Modern Physics Letters A, 1994, 09, 569-577.	0.5	8
236	Two-dimensional dilaton gravity coupled to massless spinors. Classical and Quantum Gravity, 1998, 15, 3627-3643.	1.5	8
237	A NOTE ON WEYL TRANSFORMATIONS IN TWO-DIMENSIONAL DILATON GRAVITY. Modern Physics Letters A, 2000, 15, 2113-2118.	0.5	8
238	Conformal dynamics of O-branes. Physical Review D, 2001, 65, .	1.6	8
239	Anisotropic wormhole: Tunneling in time and space. Physical Review D, 1994, 49, 6493-6499.	1.6	7
240	Quantization of an Integrable Minisuperspace Model in Dilaton-Einstein Gravity. International Journal of Modern Physics D, 1997, 06, 39-47.	0.9	6
241	Relic gravitons on Kasner-like branes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 610, 9-17.	1.5	6
242	NNETFIX: an artificial neural network-based denoising engine for gravitational-wave signals. Machine Learning: Science and Technology, 2021, 2, 035018.	2.4	5
243	COSMIC BLACK HOLES. International Journal of Modern Physics D, 2003, 12, 1699-1704.	0.9	4
244	Discriminating supersymmetry and black holes at the CERN Large Hadron Collider. Physical Review D, 2008, 77, .	1.6	4
245	Modeling spurious forces on the LISA spacecraft across a full solar cycle. Classical and Quantum Gravity, 2020, 37, 175007.	1.5	4
246	Using supervised learning algorithms as a follow-up method in the search of gravitational waves from core-collapse supernovae. Physical Review D, 2022, 105, .	1.6	4
247	Quantum electromagnetic wormholes and geometrical description of the electric charge. Physical Review D, 1994, 50, 5087-5092.	1.6	3
248	Recent developments in quantum string cosmology. Nuclear Physics, Section B, Proceedings Supplements, 2000, 88, 355-358.	0.5	3
249	Gravitational diffraction radiation. Physical Review D, 2006, 74, .	1.6	3
250	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
251	APPROXIMATE CANONICAL QUANTIZATION FOR COSMOLOGICAL MODELS. International Journal of Modern Physics D, 1999, 08, 101-115.	0.9	2
252	Pre-big bang in M-theory. Classical and Quantum Gravity, 2001, 18, 1355-1368.	1.5	2

#	Article	IF	Citations
253	QCD and spin effects in black hole air showers. Physical Review D, 2007, 76, .	1.6	2
254	Bounds on large extra dimensions from the simulation of black hole events at the LHC. Journal of High Energy Physics, 2015, 2015, 1.	1.6	2
255	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
256	CAN THE INTERACTION BETWEEN BABY UNIVERSES GENERATE A BIG UNIVERSE?. International Journal of Modern Physics D, 1994, 03, 623-626.	0.9	1
257	SUPERSYMMETRY VERSUS BLACK HOLES AT THE LHC. Modern Physics Letters A, 2008, 23, 2987-2996.	0.5	1
258	PP-WAVES ON SUPERBRANE BACKGROUNDS. Modern Physics Letters A, 2008, 23, 3225-3231.	0.5	1
259	A Needle in (Many) Haystacks: Using the False Alarm Rate to Sift Gravitational Waves from Noise. Significance, 2021, 18, 26-31.	0.3	1
260	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
261	Characterization of gravitational-wave detector noise with fractals. Classical and Quantum Gravity, 2022, 39, 135012.	1.5	1
262	Instability of theR3×S1vacuum in low-energy effective string theory. Physical Review D, 1995, 52, 2583-2586.	1.6	0
263	REPLY TO "2D GRAVITY WITHOUT TEST PARTICLES IS POINTLESS (COMMENT ON hep-th/0011136)". Modern Physics Letters A, 2001, 16, 1601-1604.	0.5	0
264	String resonances at the Large Hadron Collider. Physical Review D, 2009, 80, .	1.6	0
265	Bounds on large extra dimensions from the Generalized Uncertainty Principle. International Journal of Modern Physics A, 2017, 32, 1750082.	0.5	0
266	NONPERTUBATIVE GRAVITATIONAL EVENTS AT THE TEV SCALE. , 2006, , .		0
267	DETECTING TEV BLACK HOLES FROM EXTENSIVE AIR SHOWERS. , 2006, , .		0
268	TeV-Scale Gravity: Detecting Black Holes with Cosmic Ray Air Showers., 2005,, 327-334.		0