
Joanna Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of Carboniferous arc magmatism preserved in the Chicxulub impact structure. Bulletin of the Geological Society of America, 2022, 134, 241-260.	3.3	12
2	The Chicxulub impact and its environmental consequences. Nature Reviews Earth & Environment, 2022, 3, 338-354.	29.7	21
3	Globally distributed iridium layer preserved within the Chicxulub impact structure. Science Advances, 2021, 7, .	10.3	47
4	Ocean resurge-induced impact melt dynamics on the peak-ring of the Chicxulub impact structure, Mexico. International Journal of Earth Sciences, 2021, 110, 2619-2636.	1.8	5
5	Comparison of 2-D and 3-D full waveform inversion imaging using wide-angle seismic data from the Deep Galicia Margin. Geophysical Journal International, 2021, 227, 228-256.	2.4	3
6	Shaping of the Present-Day Deep Biosphere at Chicxulub by the Impact Catastrophe That Ended the Cretaceous. Frontiers in Microbiology, 2021, 12, 668240.	3.5	8
7	Mapping the Chicxulub Impact Stratigraphy and Peak Ring Using Drilling and Seismic Data. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006938.	3.6	8
8	Relationship Between Active Faulting/Fracturing and Magmatism Around Santorini: Seismic Anisotropy From an Active Source Tomography Experiment. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021898.	3.4	6
9	Generating Highâ€Fidelity Reflection Images Directly From Fullâ€Waveform Inversion: Hikurangi Subduction Zone Case Study. Geophysical Research Letters, 2021, 48, e2021GL094981.	4.0	5
10	Shock impedance amplified impact deformation of zircon in granitic rocks from the Chicxulub impact crater. Earth and Planetary Science Letters, 2021, 575, 117201.	4.4	15
11	Orientations of planar cataclasite zones in the Chicxulub peak ring as a ground truth for peak ring formation models. Earth and Planetary Science Letters, 2021, 576, 117236.	4.4	3
12	Winding down the Chicxulub impact: The transition between impact and normal marine sedimentation near ground zero. Marine Geology, 2020, 430, 106368.	2.1	15
13	Organic matter from the Chicxulub crater exacerbated the K–Pg impact winter. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25327-25334.	7.1	35
14	The Habitat of the Nascent Chicxulub Crater. AGU Advances, 2020, 1, e2020AV000208.	5.4	12
15	Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact. Earth and Planetary Science Letters, 2020, 548, 116476.	4.4	28
16	Probing the hydrothermal system of the Chicxulub impact crater. Science Advances, 2020, 6, eaaz3053.	10.3	69
17	A steeply-inclined trajectory for the Chicxulub impact. Nature Communications, 2020, 11, 1480.	12.8	55
18	Global Kâ€₽g Layer Deposited From a Dust Cloud. Geophysical Research Letters, 2020, 47, e2019GL086562.	4.0	24

JOANNA MORGAN

#	Article	IF	CITATIONS
19	Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17084-17093.	7.1	116
20	Geochemistry, geochronology and petrogenesis of Maya Block granitoids and dykes from the Chicxulub Impact Crater, Gulf of MA©xico: Implications for the assembly of Pangea. Gondwana Research, 2020, 82, 128-150.	6.0	26
21	Microbial life in the nascent Chicxulub crater. Geology, 2020, 48, 328-332.	4.4	40
22	Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum. Climate of the Past, 2020, 16, 1889-1899.	3.4	16
23	Tectonism and Its Relation to Magmatism Around Santorini Volcano From Upper Crustal <i>P</i> Wave Velocity. Journal of Geophysical Research: Solid Earth, 2019, 124, 10610-10629.	3.4	26
24	Imaging the Shallow Subsurface Structure of the North Hikurangi Subduction Zone, New Zealand, Using 2â€Ð Fullâ€Waveform Inversion. Journal of Geophysical Research: Solid Earth, 2019, 124, 9049-9074.	3.4	24
25	Impactâ€Induced Porosity and Microfracturing at the Chicxulub Impact Structure. Journal of Geophysical Research E: Planets, 2019, 124, 1960-1978.	3.6	23
26	U-Pb memory behavior in Chicxulub's peak ring — Applying U-Pb depth profiling to shocked zircon. Chemical Geology, 2019, 525, 356-367.	3.3	15
27	Vertically Extensive Magma Reservoir Revealed From Joint Inversion and Quantitative Interpretation of Seismic and Gravity Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 11170-11191.	3.4	38
28	The first day of the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19342-19351.	7.1	100
29	New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	22
30	Stress‣train Evolution During Peakâ€Ring Formation: A Case Study of the Chicxulub Impact Structure. Journal of Geophysical Research E: Planets, 2019, 124, 396-417.	3.6	30
31	Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion. Geophysical Journal International, 2018, 212, 244-263.	2.4	23
32	Investigating the use of 3-D full-waveform inversion to characterize the host rock at a geological disposal site. Geophysical Journal International, 2018, 215, 2035-2046.	2.4	5
33	Rock fluidization during peak-ring formation of large impact structures. Nature, 2018, 562, 511-518.	27.8	74
34	Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 2018, 558, 288-291.	27.8	123
35	Magma Plumbing Systems: A Geophysical Perspective. Journal of Petrology, 2018, 59, 1217-1251.	2.8	134
36	Seismic evidence that black smoker heat flux is influenced by localized magma replenishment and associated increases in crustal permeability. Geophysical Research Letters, 2017, 44, 1687-1695.	4.0	17

JOANNA MORGAN

#	Article	IF	CITATIONS
37	Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure. Meteoritics and Planetary Science, 2017, 52, 1330-1350.	1.6	17
38	Quantifying the Release of Climateâ€Active Gases by Large Meteorite Impacts With a Case Study of Chicxulub. Geophysical Research Letters, 2017, 44, 10,180.	4.0	83
39	Chicxulub and the Exploration of Large Peak-Ring Impact Craters through Scientific Drilling. GSA Today, 2017, , 4-8.	2.0	17
40	Offset-variable density improves acoustic full-waveform inversion: a shallow marine case study. Geophysical Prospecting, 2016, 64, 1201-1214.	1.9	1
41	The formation of peak rings in large impact craters. Science, 2016, 354, 878-882.	12.6	181
42	Next-generation seismic experiments – II: wide-angle, multi-azimuth, 3-D, full-waveform inversion of sparse field data. Geophysical Journal International, 2016, 204, 1342-1363.	2.4	25
43	An experimental assessment of the ignition of forest fuels by the thermal pulse generated by the Cretaceous–Palaeogene impact at Chicxulub. Journal of the Geological Society, 2015, 172, 175-185.	2.1	26
44	Hydrocode simulation of Ganymede and Europa cratering trends – How thick is Europa's crust?. Icarus, 2014, 231, 394-406.	2.5	49
45	Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion. Geophysical Journal International, 2013, 195, 1657-1678.	2.4	52
46	Anisotropic 3D full-waveform inversion. Geophysics, 2013, 78, R59-R80.	2.6	355
47	Revisiting wildfires at the Kâ€Pg boundary. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1508-1520.	3.0	46
48	Shallow oceanic crust: Full waveform tomographic images of the seismic layer 2A/2B boundary. Journal of Geophysical Research, 2012, 117, .	3.3	13
49	Full waveform tomographic images of the peak ring at the Chicxulub impact crater. Journal of Geophysical Research, 2011, 116, .	3.3	35
50	Response—Cretaceous Extinctions. Science, 2010, 328, 975-976.	12.6	16
51	The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 2010, 327, 1214-1218.	12.6	1,140
52	The evolution of the Onaping Formation at the Sudbury impact structure. Meteoritics and Planetary Science, 2010, 45, 759-782.	1.6	81
53	Modeling the formation of the K–Pg boundary layer. Icarus, 2009, 201, 768-780.	2.5	100
54	Mantle deformation beneath the Chicxulub impact crater. Earth and Planetary Science Letters, 2009, 284, 249-257.	4.4	35

JOANNA MORGAN

#	Article	IF	CITATIONS
55	Threeâ€dimensional joint inversion of traveltime and gravity data across the Chicxulub impact crater. Journal of Geophysical Research, 2009, 114, .	3.3	17
56	Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impactÂcrater. Nature Geoscience, 2008, 1, 131-135.	12.9	156
57	Structural uplift beneath the Chicxulub impact structure. Journal of Geophysical Research, 2008, 113, .	3.3	27
58	Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth and Planetary Science Letters, 2008, 270, 221-230.	4.4	96
59	The effect of target properties on crater morphology: Comparison of central peak craters on the Moon and Ganymede. Meteoritics and Planetary Science, 2008, 43, 1979-1992.	1.6	48
60	Observations and interpretations at Vredefort, Sudbury, and Chicxulub: Towards an empirical model of terrestrial impact basin formation. Meteoritics and Planetary Science, 2008, 43, 855-882.	1.6	76
61	Comment on "Determining Chondritic Impactor Size from the Marine Osmium Isotope Record". Science, 2008, 321, 1158-1158.	12.6	4
62	Imaging of intrabasalt and subbasalt structure with full wavefield seismic tomography. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	19
63	The Chicxulub Scientific Drilling Project (CSDP). Meteoritics and Planetary Science, 2004, 39, 787-790.	1.6	66
64	Chicxulub central crater structure: Initial results from physical property measurements and combined velocity and gravity modeling. Meteoritics and Planetary Science, 2004, 39, 1019-1034.	1.6	37
65	Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin. Meteoritics and Planetary Science, 2004, 39, 1089-1098.	1.6	33
66	Chicxulub: Testing for postâ€impact hydrothermal input into the Tertiary ocean. Meteoritics and Planetary Science, 2004, 39, 1223-1231.	1.6	16
67	Near-surface seismic expression of the Chicxulub impact crater. , 1999, , .		15
68	Shock-deformed zircon from the Chicxulub impact crater and implications for cratering process. Geology, 0, , .	4.4	1