Ken M Fritz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230275/publications.pdf Version: 2024-02-01

KEN M FDITZ

#	Article	IF	CITATIONS
1	Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshwater Science, 2022, 41, 167-182.	1.8	15
2	Assessing placement bias of the global river gauge network. Nature Sustainability, 2022, 5, 586-592.	23.7	51
3	Beyond Streamflow: Call for a National Data Repository of Streamflow Presence for Streams and Rivers in the United States. Water (Switzerland), 2021, 13, 1627.	2.7	14
4	A global perspective on the functional responses of stream communities to flow intermittence. Ecography, 2021, 44, 1511-1523.	4.5	24
5	Implementing an Operational Framework to Develop a Streamflow Duration Assessment Method: A Case Study from the Arid West United States. Water (Switzerland), 2021, 13, 3310.	2.7	112
6	Classifying Streamflow Duration: The Scientific Basis and an Operational Framework for Method Development. Water (Switzerland), 2020, 12, 2545.	2.7	18
7	What's in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water (Switzerland), 2020, 12, 1980.	2.7	49
8	River ecosystem conceptual models and nonâ€perennial rivers: A critical review. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1473.	6.5	37
9	Does Riparian Fencing Protect Stream Water Quality in Cattle-Grazed Lands?. Environmental Management, 2020, 66, 121-135.	2.7	8
10	Zero or not? Causes and consequences of zeroâ€flow stream gage readings. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1436.	6.5	63
11	Comparison of Three Macroinvertebrate Sampling Methods for Use in Assessment of Water Quality Changes in Flashy Urban Streams. Journal of Environmental Protection, 2020, 11, 585-609.	0.7	3
12	What's in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water (Switzerland), 2020, 12, 1980.	2.7	4
13	Differing Modes of Biotic Connectivity within Freshwater Ecosystem Mosaics. Journal of the American Water Resources Association, 2019, 55, 307-317.	2.4	23
14	Coarse particulate organic matter dynamics in ephemeral tributaries of a Central Appalachian stream network. Ecosphere, 2019, 10, e02654.	2.2	8
15	Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters. Journal of the American Water Resources Association, 2018, 54, 287-297.	2.4	30
16	Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis. Journal of the American Water Resources Association, 2018, 54, 323-345.	2.4	53
17	Biota Connect Aquatic Habitats throughout Freshwater Ecosystem Mosaics. Journal of the American Water Resources Association, 2018, 54, 372-399.	2.4	45
18	Flow intermittence and ecosystem services in rivers of the Anthropocene. Journal of Applied Ecology, 2018, 55, 353-364.	4.0	113

Ken M Fritz

#	Article	IF	CITATIONS
19	Response to basal resources by stream macroinvertebrates is shaped by watershed urbanization, riparian canopy cover, and season. Freshwater Science, 2018, 37, 640-652.	1.8	15
20	<scp>IRBAS</scp> : An online database to collate, analyze, and synthesize data on the biodiversity and ecology of intermittent rivers worldwide. Ecology and Evolution, 2017, 7, 815-823.	1.9	5
21	Urban infrastructure influences dissolved organic matter quality and bacterial metabolism in an urban stream network. Freshwater Biology, 2017, 62, 1917-1928.	2.4	13
22	Challenges, developments and perspectives in intermittent river ecology. Freshwater Biology, 2016, 61, 1171-1180.	2.4	67
23	Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology, 2016, 61, 1181-1199.	2.4	190
24	Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology, 2016, 9, 1141-1153.	2.4	102
25	Validation of Rapid Assessment Methods to Determine Streamflow Duration Classes in the Pacific Northwest, USA. Environmental Management, 2015, 56, 34-53.	2.7	25
26	Urban Stream Burial Increases Watershed-Scale Nitrate Export. PLoS ONE, 2015, 10, e0132256.	2.5	34
27	Effects of urban stream burial on organic matter dynamics and reach scale nitrate retention. Biogeochemistry, 2014, 121, 107-126.	3.5	48
28	A Validation Study of a Rapid Field-Based Rating System for Discriminating Among Flow Permanence Classes of Headwater Streams in South Carolina. Environmental Management, 2013, 52, 1286-1298.	2.7	14
29	Comparing the Extent and Permanence of Headwater Streams From Two Field Surveys to Values From Hydrographic Databases and Maps. Journal of the American Water Resources Association, 2013, 49, 867-882.	2.4	87
30	Invertebrate colonization of leaves and roots within sediments of intermittent Coastal Plain streams across hydrologic phases. Aquatic Sciences, 2011, 73, 459-469.	1.5	9
31	An assessment of cellulose filters as a standardized material for measuring litter breakdown in headwater streams. Ecohydrology, 2011, 4, 469-476.	2.4	16
32	Structural and functional characteristics of natural and constructed channels draining a reclaimed mountaintop removal and valley fill coal mine. Journal of the North American Benthological Society, 2010, 29, 673-689.	3.1	78
33	Spider-Mediated Flux of PCBs from Contaminated Sediments to Terrestrial Ecosystems and Potential Risks to Arachnivorous Birds. Environmental Science & Technology, 2010, 44, 2849-2856.	10.0	100
34	Urbanization affects the extent and hydrologic permanence of headwater streams in a midwestern US metropolitan area. Journal of the North American Benthological Society, 2009, 28, 911-928.	3.1	98
35	Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams. Ecological Indicators, 2009, 9, 150-159.	6.3	27
36	Can bryophytes be used to characterize hydrologic permanence in forested headwater streams?. Ecological Indicators, 2009, 9, 681-692.	6.3	34

Ken M Fritz

#	Article	IF	CITATIONS
37	Physical indicators of hydrologic permanence in forested headwater streams. Journal of the North American Benthological Society, 2008, 27, 690-704.	3.1	61
38	Influence of Trophic Position and Spatial Location on Polychlorinated Biphenyl (PCB) Bioaccumulation in a Stream Food Web. Environmental Science & Technology, 2008, 42, 2316-2322.	10.0	51
39	Biomass and Decay Rates of Roots and Detritus in Sediments of Intermittent Coastal Plain Streams. Hydrobiologia, 2006, 556, 265-277.	2.0	9
40	Differential response of stream periphyton and invertebrate grazers to habitat modification by the emergent macrophyte Justicia americana. Marine and Freshwater Research, 2006, 57, 207.	1.3	4
41	Harshness: characterisation of intermittent stream habitat over space and time. Marine and Freshwater Research, 2005, 56, 13.	1.3	60
42	Resistance and Resilience of Macroinvertebrate Assemblages to Drying and Flood in a Tallgrass Prairie Stream System. Hydrobiologia, 2004, 527, 99-112.	2.0	158
43	Habitat modification by the stream macrophyte Justicia americana and its effects on biota. Oecologia, 2004, 140, 388-397.	2.0	42
44	Life on the Edge: The Ecology of Great Plains Prairie Streams. BioScience, 2004, 54, 205.	4.9	301
45	Factors affecting biomass allocation in the riverine macrophyte Justicia americana. Aquatic Botany, 2004, 78, 279-288.	1.6	21
46	Substratum stability associated with the riverine macrophyte Justicia americana. Freshwater Biology, 2003, 48, 1630-1639.	2.4	22
47	Recovery of Three Fish Species to Flood and Seasonal Drying in a Tallgrass Prairie Stream. Transactions of the Kansas Academy of Science, 2002, 105, 209-218.	0.1	15
48	The Effects of Bison Crossings on the Macroinvertebrate Community in a Tallgrass Prairie Stream. American Midland Naturalist, 1999, 141, 253-265.	0.4	28
49	The relationship of floods, drying, flow and light to primary production and producer biomass in a prairie stream. Hydrobiologia, 1996, 333, 151-159.	2.0	103