Sheldon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230164/publications.pdf

Version: 2024-02-01

567281 454955 1,421 33 15 30 citations h-index g-index papers 36 36 36 2341 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellular and Molecular Engineering of Glycan Sialylation in Heterologous Systems. Molecules, 2021, 26, 5950.	3.8	4
2	Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. ELife, 2020, 9, .	6.0	165
3	Recent advances in the engineering and application of streptavidin-like molecules. Applied Microbiology and Biotechnology, 2019, 103, 7355-7365.	3.6	16
4	Highâ€Affinity Antibody Detection with a Bivalent Circularized Peptide Containing Antibodyâ€Binding Domains. Biotechnology Journal, 2019, 14, 1800647.	3.5	3
5	Engineered pH-dependent recycling antibodies enhance elimination of Staphylococcal enterotoxin B superantigen in mice. MAbs, 2019, 11, 411-421.	5.2	4
6	Functional expression of monomeric streptavidin and fusion proteins in Escherichia coli: applications in flow cytometry and ELISA. Applied Microbiology and Biotechnology, 2018, 102, 10079-10089.	3.6	7
7	Enhancement of Muramyl Dipeptideâ€Dependent NOD2 Activity by a Selfâ€Derived Peptide. Journal of Cellular Biochemistry, 2017, 118, 1227-1238.	2.6	9
8	Super-resolution imaging of synaptic and Extra-synaptic AMPA receptors with different-sized fluorescent probes. ELife, 2017, 6, .	6.0	53
9	Cell labeling and proximity dependent biotinylation with engineered monomeric streptavidin. Technology, 2016, 04, 152-158.	1.4	5
10	Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nature Communications, 2016, 7, 10773.	12.8	137
11	More than one way to skin a cat: Inâ€situ engineering of an antibody through photoâ€conjugated C2 domain. Biotechnology Journal, 2015, 10, 508-509.	3.5	O
12	Selective TERS detection and imaging through controlled plasmonics. Faraday Discussions, 2015, 178, 221-235.	3.2	13
13	Postsynthetic Domain Assembly with NpuDnaE and SspDnaB Split Inteins. Applied Biochemistry and Biotechnology, 2015, 177, 1137-1151.	2.9	9
14	Expression and purification of soluble monomeric streptavidin in Escherichia coli. Applied Microbiology and Biotechnology, 2014, 98, 6285-6295.	3.6	30
15	Structureâ€based engineering of streptavidin monomer with a reduced biotin dissociation rate. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1621-1633.	2.6	44
16	Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Applied Microbiology and Biotechnology, 2013, 97, 9343-9353.	3.6	328
17	Epitope-Guided Engineering of Monobody Binders for <i>in Vivo</i> Inhibition of Erk-2 Signaling. ACS Chemical Biology, 2013, 8, 608-616.	3.4	14
18	Stable, highâ€affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnology and Bioengineering, 2013, 110, 57-67.	3.3	104

#	Article	IF	CITATIONS
19	Epitope guided engineering of monobody binders for in vivo inhibition of Erkâ€2 signaling. FASEB Journal, 2013, 27, 1042.2.	0.5	O
20	Biotinâ€assisted folding of streptavidin on the yeast surface. Biotechnology Progress, 2012, 28, 276-283.	2.6	13
21	Engineered Streptavidin Monomer and Dimer with Improved Stability and Function. Biochemistry, 2011, 50, 8682-8691.	2.5	57
22	Flow cytometric analysis of genetic FRET detectors containing variable substrate sequences. Biotechnology Progress, 2010, 26, 1765-1771.	2.6	0
23	Disulfide trapping of protein complexes on the yeast surface. Biotechnology and Bioengineering, 2010, 106, 27-41.	3.3	10
24	Computational and mutagenesis studies of the streptavidin native dimer interface. Journal of Molecular Graphics and Modelling, 2010, 29, 295-308.	2.4	10
25	Structural coupling between FKBP12 and buried water. Proteins: Structure, Function and Bioinformatics, 2009, 74, 603-611.	2.6	63
26	Computational design of protein therapeutics. Drug Discovery Today: Technologies, 2008, 5, e43-e48.	4.0	24
27	Simulation of pH-dependent edge strand rearrangement in human Â-2 microglobulin. Protein Science, 2006, 15, 200-207.	7.6	18
28	Limitations of yeast surface display in engineering proteins of high thermostability. Protein Engineering, Design and Selection, 2006, 19, 211-217.	2.1	51
29	Progress in the development and application of computational methods for probabilistic protein design. Computers and Chemical Engineering, 2005, 29, 407-421.	3.8	22
30	Statistical and molecular dynamics studies of buried waters in globular proteins. Proteins: Structure, Function and Bioinformatics, 2005, 60, 450-463.	2.6	100
31	Modulating the DNA Affinity of Elk-1 with Computationally Selected Mutations. Journal of Molecular Biology, 2005, 348, 75-83.	4.2	7
32	Advances in computational protein design. Current Opinion in Structural Biology, 2004, 14, 487-494.	5.7	90
33	7ÂÂComputational protein design and discovery. Annual Reports on the Progress of Chemistry Section C, 2004, 100, 195-236.	4.4	8