
Sally M Rosengren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4230021/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Subjective Cognitive Dysfunction in Patients with Dizziness and Vertigo. Audiology and Neuro-Otology, 2022, 27, 122-132.	0.6	10
2	A Portrait of Menière's Disease Using Contemporary Hearing and Balance Tests. Otology and Neurotology, 2022, 43, e489-e496.	0.7	3
3	Impact of Cochlear Implantation on Canal and Otolith Function. Otology and Neurotology, 2022, 43, 304-312.	0.7	2
4	Vestibular function testing in the 21st century: video head impulse test, vestibular evoked myogenic potential, video nystagmography; which tests will provide answers?. Current Opinion in Neurology, 2022, 35, 64-74.	1.8	8
5	Quantifying the effects of electrode placement and montage on measures of cVEMP amplitude and muscle contraction. Journal of Vestibular Research: Equilibrium and Orientation, 2021, 31, 47-59.	0.8	1
6	Comparison of the Effects of Matching and Normalization on the Cervical Vestibular Evoked Myogenic Potential. Otology and Neurotology, 2021, Publish Ahead of Print, e1592-e1599.	0.7	1
7	Evidence of a Vestibular Origin for Crossed-Sternocleidomastoid Muscle Responses to Air-Conducted Sound. Ear and Hearing, 2020, 41, 896-906.	1.0	1
8	Bone-Conducted oVEMP Latency Delays Assist in the Differential Diagnosis of Large Air-Conducted oVEMP Amplitudes. Frontiers in Neurology, 2020, 11, 580184.	1.1	5
9	Nystagmus characteristics of healthy controls. Journal of Vestibular Research: Equilibrium and Orientation, 2020, 30, 345-352.	0.8	8
10	Vestibular-Evoked Myogenic Potential Testing in Vestibular Localization and Diagnosis. Seminars in Neurology, 2020, 40, 018-032.	0.5	19
11	Bone-conducted vestibular and stretch reflexes in human neck muscles. Experimental Brain Research, 2020, 238, 1237-1248.	0.7	4
12	Investigating short latency subcortical vestibular projections in humans: what have we learned?. Journal of Neurophysiology, 2019, 122, 2000-2015.	0.9	10
13	Repetitive ocular vestibular evoked myogenic potential stimulation for the diagnosis of myasthenia gravis: Optimization of stimulation parameters. Clinical Neurophysiology, 2019, 130, 1125-1134.	0.7	14
14	Sound-evoked vestibular projections to the splenius capitis in humans: comparison with the sternocleidomastoid muscle. Journal of Applied Physiology, 2019, 126, 1619-1629.	1.2	10
15	Vestibular evoked myogenic potentials in practice: Methods, pitfalls and clinical applications. Clinical Neurophysiology Practice, 2019, 4, 47-68.	0.6	184
16	Laboratory examinations for the vestibular system. Current Opinion in Neurology, 2018, 31, 111-116.	1.8	31
17	Disorders of the inner-ear balance organs and their pathways. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 159, 385-401.	1.0	8
18	μVEMP: A Portable Interface to Record Vestibular Evoked Myogenic Potentials (VEMPs) With a Smart Phone or Tablet. Frontiers in Neurology, 2018, 9, 543.	1.1	15

SALLY M ROSENGREN

#	Article	IF	CITATIONS
19	Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy. Frontiers in Neurology, 2018, 9, 252.	1.1	14
20	The Contributions of Vestibular Evoked Myogenic Potentials and Acoustic Vestibular Stimulation to Our Understanding of the Vestibular System. Frontiers in Neurology, 2018, 9, 481.	1.1	46
21	Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society1. Journal of Vestibular Research: Equilibrium and Orientation, 2017, 27, 177-189.	0.8	364
22	cVEMP morphology changes with recording electrode position, but single motor unit activity remains constant. Journal of Applied Physiology, 2016, 120, 833-842.	1.2	14
23	Safe Levels of Acoustic Stimulation for Vemps. Otology and Neurotology, 2016, 37, 117-118.	0.7	11
24	Ocular vestibular evoked myogenic potentials as a test for myasthenia gravis. Neurology, 2016, 86, 660-668.	1.5	35
25	Contrasting phase effects on vestibular evoked myogenic potentials (VEMPs) produced by air- and bone-conducted stimuli. Experimental Brain Research, 2016, 234, 141-149.	0.7	18
26	Effects of muscle contraction on cervical vestibular evoked myogenic potentials in normal subjects. Clinical Neurophysiology, 2015, 126, 2198-2206.	0.7	49
27	Single motor unit responses underlying cervical vestibular evoked myogenic potentials produced by bone-conducted stimuli. Clinical Neurophysiology, 2015, 126, 1234-1245.	0.7	24
28	Clinical Utility of Ocular Vestibular-Evoked Myogenic Potentials (oVEMPs). Current Neurology and Neuroscience Reports, 2015, 15, 22.	2.0	43
29	Ethanol consumption impairs vestibulo-ocular reflex function measured by the video head impulse test and dynamic visual acuity. Journal of Vestibular Research: Equilibrium and Orientation, 2014, 24, 289-295.	0.8	8
30	The effect of alcohol on cervical and ocular vestibular evoked myogenic potentials in healthy volunteers. Clinical Neurophysiology, 2014, 125, 1700-1708.	0.7	7
31	Safe Levels of Acoustic Stimulation. Otology and Neurotology, 2014, 35, 932-933.	0.7	28
32	Why do oVEMPs become larger when you look up? Explaining the effect of gaze elevation on the ocular vestibular evoked myogenic potential. Clinical Neurophysiology, 2013, 124, 785-791.	0.7	56
33	New perspectives on vestibular evoked myogenic potentials. Current Opinion in Neurology, 2013, 26, 74-80.	1.8	86
34	Single motor unit activity in human extraocular muscles during the vestibuloâ€ocular reflex. Journal of Physiology, 2012, 590, 3091-3101.	1.3	120
35	Vestibular neuritis has selective effects on air- and bone-conducted cervical and ocular vestibular evoked myogenic potentials. Clinical Neurophysiology, 2011, 122, 1246-1255.	0.7	60
36	Ocular and cervical vestibular evoked myogenic potentials produced by air- and bone-conducted stimuli: Comparative properties and effects of age. Clinical Neurophysiology, 2011, 122, 2282-2289.	0.7	151

SALLY M ROSENGREN

#	Article	IF	CITATIONS
37	Ocular vestibular evoked myogenic potentials produced by impulsive lateral acceleration in unilateral vestibular dysfunction. Clinical Neurophysiology, 2011, 122, 2498-2504.	0.7	33
38	Cervical and Ocular Vestibular Evoked Myogenic Potentials Are Sensitive to Stimulus Phase. Audiology and Neuro-Otology, 2011, 16, 277-288.	0.6	17
39	Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson's disease. Journal of Vestibular Research: Equilibrium and Orientation, 2010, 19, 137-142.	0.8	69
40	Vestibular evoked myogenic potentials are intact in cervical dystonia. Movement Disorders, 2010, 25, 2845-2853.	2.2	14
41	Single trial detection of human vestibular evoked myogenic potentials is determined by signal-to-noise ratio. Journal of Applied Physiology, 2010, 109, 53-59.	1.2	8
42	Vestibular-evoked myogenic potentials (VEMPs). Handbook of Clinical Neurophysiology, 2010, , 191-200.	0.0	3
43	Vestibular evoked myogenic potentials evoked by brief interaural head acceleration: properties and possible origin. Journal of Applied Physiology, 2009, 107, 841-852.	1.2	76
44	The relative effectiveness of different stimulus waveforms in evoking VEMPs: Significance of stimulus energy and frequency. Journal of Vestibular Research: Equilibrium and Orientation, 2009, 19, 33-40.	0.8	48
45	A utricular origin of frequency tuning to low-frequency vibration in the human vestibular system?. Neuroscience Letters, 2009, 451, 175-180.	1.0	112
46	Low-frequency tuning in the human vestibular–ocular projection is determined by both peripheral and central mechanisms. Neuroscience Letters, 2009, 458, 43-47.	1.0	34
47	Galvanic ocular vestibular evoked myogenic potentials provide new insight into vestibulo-ocular reflexes and unilateral vestibular loss. Clinical Neurophysiology, 2009, 120, 569-580.	0.7	34
48	The effect of gaze direction on the ocular vestibular evoked myogenic potential produced by air-conducted sound. Clinical Neurophysiology, 2009, 120, 1386-1391.	0.7	97
49	Ocular vestibular evoked myogenic potentials (OVEMPs) produced by impulsive transmastoid accelerations. Clinical Neurophysiology, 2008, 119, 1638-1651.	0.7	85
50	A source analysis of short-latency vestibular evoked potentials produced by air- and bone-conducted sound. Clinical Neurophysiology, 2008, 119, 1881-1894.	0.7	46
51	Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neuroscience Letters, 2008, 444, 36-41.	1.0	90
52	Ocular vestibular evoked myogenic potentials (OVEMPs) produced by air- and bone-conducted sound. Clinical Neurophysiology, 2007, 118, 381-390.	0.7	314
53	Delayed vestibular evoked responses to the eyes and neck in a patient with an isolated brainstem lesion. Clinical Neurophysiology, 2007, 118, 2112-2116.	0.7	27
54	Vestibular evoked potentials (VsEPs) in patients with severe to profound bilateral hearing loss. Clinical Neurophysiology, 2006, 117, 1145-1153.	0.7	35

#	Article	IF	CITATIONS
55	Cervical dystonia responsive to acoustic and galvanic vestibular stimulation. Movement Disorders, 2006, 21, 1495-1499.	2.2	10
56	Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound. Clinical Neurophysiology, 2005, 116, 1938-1948.	0.7	382
57	A short latency vestibular evoked potential (VsEP) produced by bone-conducted acoustic stimulation. Journal of the Acoustical Society of America, 2003, 114, 3264-3272.	0.5	64