
## Hong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229901/publications.pdf Version: 2024-02-01



HONG ZHANG

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Crystal Structure of the Heterodimeric CLOCK:BMAL1 Transcriptional Activator Complex. Science, 2012, 337, 189-194.                                                                                                                                      | 12.6 | 270       |
| 2  | Structure of C3PO and mechanism of human RISC activation. Nature Structural and Molecular Biology, 2011, 18, 650-657.                                                                                                                                   | 8.2  | 124       |
| 3  | Structural Characterization of a Human Cytosolic NMN/NaMN Adenylyltransferase and Implication in<br>Human NAD Biosynthesis. Journal of Biological Chemistry, 2003, 278, 13503-13511.                                                                    | 3.4  | 115       |
| 4  | TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E884-93.                                                                             | 7.1  | 115       |
| 5  | Adjuvant effect of the novel TLR1/TLR2 agonist Diprovocim synergizes with anti–PD-L1 to eliminate<br>melanoma in mice. Proceedings of the National Academy of Sciences of the United States of America,<br>2018, 115, E8698-E8706.                      | 7.1  | 77        |
| 6  | Structure of Human Nicotinamide/Nicotinic Acid Mononucleotide Adenylyltransferase. Journal of<br>Biological Chemistry, 2002, 277, 13148-13154.                                                                                                          | 3.4  | 73        |
| 7  | Crystal Structures of E. coli Nicotinate Mononucleotide Adenylyltransferase and Its Complex with Deamido-NAD. Structure, 2002, 10, 69-79.                                                                                                               | 3.3  | 67        |
| 8  | Expression, Localization, and Biochemical Characterization of Nicotinamide Mononucleotide<br>Adenylyltransferase 2. Journal of Biological Chemistry, 2010, 285, 40387-40396.                                                                            | 3.4  | 64        |
| 9  | Targeting NAD Biosynthesis in Bacterial Pathogens: Structure-Based Development of Inhibitors of<br>Nicotinate Mononucleotide Adenylyltransferase NadD. Chemistry and Biology, 2009, 16, 849-861.                                                        | 6.0  | 63        |
| 10 | Structural Basis of TLR2/TLR1 Activation by the Synthetic Agonist Diprovocim. Journal of Medicinal Chemistry, 2019, 62, 2938-2949.                                                                                                                      | 6.4  | 53        |
| 11 | Crystal Structure of Haemophilus influenzae NadR Protein. Journal of Biological Chemistry, 2002, 277, 33291-33299.                                                                                                                                      | 3.4  | 46        |
| 12 | Structure and Mechanism of a Eukaryotic FMN Adenylyltransferase. Journal of Molecular Biology, 2009, 389, 388-400.                                                                                                                                      | 4.2  | 45        |
| 13 | Diprovocims: A New and Exceptionally Potent Class of Toll-like Receptor Agonists. Journal of the<br>American Chemical Society, 2018, 140, 14440-14454.                                                                                                  | 13.7 | 35        |
| 14 | Structural Analysis ofPseudomonas1-Aminocyclopropane-1-carboxylate Deaminase Complexes:Â Insight<br>into the Mechanism of a Unique Pyridoxal-5â€~-phosphate Dependent Cyclopropane Ring-Opening<br>Reactionâ€,â€j. Biochemistry, 2004, 43, 13328-13339. | 2.5  | 34        |
| 15 | Bifunctional NMN Adenylyltransferase/ADP-Ribose Pyrophosphatase: Structure and Function in<br>Bacterial NAD Metabolism. Structure, 2008, 16, 196-209.                                                                                                   | 3.3  | 30        |
| 16 | Discovery and Structure–Activity Relationships of the Neoseptins: A New Class of Toll-like Receptor-4<br>(TLR4) Agonists. Journal of Medicinal Chemistry, 2016, 59, 4812-4830.                                                                          | 6.4  | 30        |
| 17 | Complexes of Bacterial Nicotinate Mononucleotide Adenylyltransferase with Inhibitors: Implication for Structure-Based Drug Design and Improvement. Journal of Medicinal Chemistry, 2010, 53, 5229-5239.                                                 | 6.4  | 27        |
| 18 | Structural Analysis of 1-Aminocyclopropane-1-Carboxylate Deaminase: Observation of an Aminyl<br>Intermediate and Identification of Tyr 294 as the Active-Site Nucleophile. Angewandte Chemie -<br>International Edition, 2004, 43, 3425-3429.           | 13.8 | 13        |

| #  | Article                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor.<br>Structure, 2017, 25, 1187-1194.e3. | 3.3 | 9         |
| 20 | Translin. The Enzymes, 2012, 32, 69-82.                                                                                         | 1.7 | 0         |