Alessandro Doria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229879/publications.pdf

Version: 2024-02-01

170 papers 16,309 citations

52 h-index 124 g-index

171 all docs

171 docs citations

times ranked

171

19324 citing authors

#	Article	IF	CITATIONS
1	Identification and Importance of Brown Adipose Tissue in Adult Humans. New England Journal of Medicine, 2009, 360, 1509-1517.	13.9	3,690
2	New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. New England Journal of Medicine, 2021, 385, 1737-1749.	13.9	1,236
3	Activation of Human Brown Adipose Tissue by a \hat{I}^2 3-Adrenergic Receptor Agonist. Cell Metabolism, 2015, 21, 33-38.	7.2	823
4	Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine, 2009, 15, 940-945.	15.2	663
5	Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genetics, 1999, 23, 323-328.	9.4	551
6	Residual Insulin Production and Pancreatic \hat{l}^2 -Cell Turnover After 50 Years of Diabetes: Joslin Medalist Study. Diabetes, 2010, 59, 2846-2853.	0.3	422
7	A Haplotype at the Adiponectin Locus Is Associated With Obesity and Other Features of the Insulin Resistance Syndrome. Diabetes, 2002, 51, 2306-2312.	0.3	407
8	Circulating TNF Receptors 1 and 2 Predict ESRD in Type 2 Diabetes. Journal of the American Society of Nephrology: JASN, 2012, 23, 507-515.	3.0	388
9	The Emerging Genetic Architecture of Type 2 Diabetes. Cell Metabolism, 2008, 8, 186-200.	7.2	271
10	A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nature Medicine, 2019, 25, 805-813.	15.2	260
11	Genome-Wide Association Scan for Diabetic Nephropathy Susceptibility Genes in Type 1 Diabetes. Diabetes, 2009, 58, 1403-1410.	0.3	259
12	Genetic Influences of Adiponectin on Insulin Resistance, Type 2 Diabetes, and Cardiovascular Disease. Diabetes, 2007, 56, 1198-1209.	0.3	255
13	Serum Urate Lowering with Allopurinol and Kidney Function in Type 1 Diabetes. New England Journal of Medicine, 2020, 382, 2493-2503.	13.9	228
14	Early Progressive Renal Decline Precedes the Onset of Microalbuminuria and Its Progression to Macroalbuminuria. Diabetes Care, 2014, 37, 226-234.	4.3	219
15	Protection From Retinopathy and Other Complications in Patients With Type 1 Diabetes of Extreme Duration. Diabetes Care, 2011, 34, 968-974.	4.3	213
16	GENETICS OF NON-INSULIN-DEPENDENT (TYPE-II) DIABETES MELLITUS. Annual Review of Medicine, 1996, 47, 509-531.	5.0	208
17	High-Normal Serum Uric Acid Increases Risk of Early Progressive Renal Function Loss in Type 1 Diabetes. Diabetes Care, 2010, 33, 1337-1343.	4.3	191
18	SerpinB1 Promotes Pancreatic β Cell Proliferation. Cell Metabolism, 2016, 23, 194-205.	7.2	177

#	Article	IF	CITATIONS
19	Clinical Factors Associated With Resistance to Microvascular Complications in Diabetic Patients of Extreme Disease Duration. Diabetes Care, 2007, 30, 1995-1997.	4.3	168
20	Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Human Molecular Genetics, 2008, 17, 1695-1704.	1.4	164
21	A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Human Molecular Genetics, 2004, 13, 2197-2205.	1.4	161
22	Mutations at the $\langle i \rangle$ BLK $\langle i \rangle$ locus linked to maturity onset diabetes of the young and \hat{l}^2 -cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14460-14465.	3.3	156
23	PAX4Mutations in Thais with Maturity Onset Diabetes of the Young. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2821-2826.	1.8	147
24	Cathepsin L activity controls adipogenesis and glucose tolerance. Nature Cell Biology, 2007, 9, 970-977.	4.6	135
25	The +276 G/T Single Nucleotide Polymorphism of the Adiponectin Gene Is Associated With Coronary Artery Disease in Type 2 Diabetic Patients. Diabetes Care, 2004, 27, 2015-2020.	4.3	131
26	The +276 Polymorphism of the APM1 Gene, Plasma Adiponectin Concentration, and Cardiovascular Risk in Diabetic Men. Diabetes, 2005, 54, 1607-1610.	0.3	130
27	Uric Acid Lowering to Prevent Kidney Function Loss in Diabetes: The Preventing Early Renal Function Loss (PERL) Allopurinol Study. Current Diabetes Reports, 2013, 13, 550-559.	1.7	127
28	Heritability of Serum Resistin and Its Genetic Correlation with Insulin Resistance-Related Features in Nondiabetic Caucasians. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2792-2795.	1.8	125
29	Association Between a Genetic Variant Related to Glutamic Acid Metabolism and Coronary Heart Disease in Individuals With Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2013, 310, 821.	3.8	122
30	Adiponectin Genetic Variability, Plasma Adiponectin, and Cardiovascular Risk in Patients With Type 2 Diabetes. Diabetes, 2006, 55, 1512-1516.	0.3	119
31	Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes. Diabetes, 2013, 62, 3589-3598.	0.3	116
32	Interaction Between Poor Glycemic Control and 9p21 Locus on Risk of Coronary Artery Disease in Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2008, 300, 2389.	3.8	115
33	Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus. American Journal of Human Genetics, 2015, 97, 177-185.	2.6	114
34	The K121Q Polymorphism of the ENPP1/PC-1 Gene Is Associated With Insulin Resistance/Atherogenic Phenotypes, Including Earlier Onset of Type 2 Diabetes and Myocardial Infarction. Diabetes, 2005, 54, 3021-3025.	0.3	110
35	Genetic Variation at the Adiponectin Locus and Risk of Type 2 Diabetes in Women. Diabetes, 2004, 53, 209-213.	0.3	108
36	Putting the genes for type II diabetes on the map. Nature Medicine, 2001, 7, 277-279.	15.2	94

#	Article	IF	CITATIONS
37	Insulin Signaling Regulates the FoxM1/PLK1/CENP-A Pathway to Promote Adaptive Pancreatic βÂCell Proliferation. Cell Metabolism, 2017, 25, 868-882.e5.	7.2	86
38	Genetic Variants at the Resistin Locus and Risk of Type 2 Diabetes in Caucasians. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 4407-4410.	1.8	85
39	Fatty Acid Translocase (FAT/CD36) Is Localized on Insulin-Containing Granules in Human Pancreatic Â-Cells and Mediates Fatty Acid Effects on Insulin Secretion. Diabetes, 2005, 54, 472-481.	0.3	84
40	Determinants of the Development of Diabetes (Maturity-Onset Diabetes of the Young-3) in Carriers of HNF-1Â Mutations: Evidence for parent-of-origin effect. Diabetes Care, 2002, 25, 2292-2301.	4.3	82
41	Genetic Susceptibility to Coronary Heart Disease in Type 2 Diabetes. Journal of the American College of Cardiology, 2011, 58, 2675-2682.	1.2	82
42	Genetic Predisposition to Dyslipidemia and Type 2 Diabetes Risk in Two Prospective Cohorts. Diabetes, 2012, 61, 745-752.	0.3	81
43	Tag Polymorphisms at the A20 (TNFAIP3) Locus Are Associated With Lower Gene Expression and Increased Risk of Coronary Artery Disease in Type 2 Diabetes. Diabetes, 2007, 56, 499-505.	0.3	71
44	Glycemic Control, Cardiac Autoimmunity, and Long-Term Risk of Cardiovascular Disease in Type 1 Diabetes Mellitus. Circulation, 2019, 139, 730-743.	1.6	71
45	Serum Resistin, Cardiovascular Disease and All-Cause Mortality in Patients with Type 2 Diabetes. PLoS ONE, 2013, 8, e64729.	1.1	71
46	Multigenic control of serum adiponectin levels: evidence for a role of the APM1 gene and a locus on 14q13. Physiological Genomics, 2004, 19, 170-174.	1.0	67
47	Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I-converting enzyme gene. Diabetes, 1994, 43, 690-695.	0.3	67
48	A Visfatin Promoter Polymorphism Is Associated with Lowâ€Grade Inflammation and Type 2 Diabetes. Obesity, 2006, 14, 2119-2126.	1.5	66
49	Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance. Nature Medicine, 2013, 19, 217-226.	15.2	65
50	The <i>TRIB3</i> Q84R Polymorphism and Risk of Early-Onset Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 190-196.	1.8	58
51	Synergistic effect of angiotensin II type 1 receptor genotype and poor glycaemic control on risk of nephropathy in IDDM. Diabetologia, 1997, 40, 1293-1299.	2.9	57
52	The role of aldose reductase gene in the susceptibility to diabetic nephropathy in Type II (non-insulin-dependent) diabetes mellitus (Short Communication). Diabetologia, 1999, 42, 94-97.	2.9	53
53	Phenotypic characteristics of early-onset autosomal-dominant type 2 diabetes unlinked to known maturity-onset diabetes of the young (MODY) genes. Diabetes Care, 1999, 22, 253-261.	4.3	53
54	Identification of a Locus for Maturity-Onset Diabetes of the Young on Chromosome 8p23. Diabetes, 2004, 53, 1375-1384.	0.3	51

#	Article	IF	CITATIONS
55	Genetics of Diabetes Complications. Current Diabetes Reports, 2010, 10, 467-475.	1.7	51
56	Clustering of risk factors in hypertensive insulin-dependent diabetics with high sodium-lithium countertransport. Kidney International, 1992, 41, 855-861.	2.6	48
57	Genetic susceptibility to nephropathy in insulinâ€dependent diabetes: From epidemiology to molecular genetics. Diabetes/metabolism Reviews, 1995, 11, 287-314.	0.2	48
58	Elevated release of sCD40L from platelets of diabetic patients by thrombin, glucose and advanced glycation end products. Diabetes and Vascular Disease Research, 2005, 2, 81-87.	0.9	48
59	Genetic Predictors of Cardiovascular Mortality During Intensive Glycemic Control in Type 2 Diabetes: Findings From the ACCORD Clinical Trial. Diabetes Care, 2016, 39, 1915-1924.	4.3	47
60	Uric Acid and Diabetic Nephropathy Risk. Contributions To Nephrology, 2018, 192, 103-109.	1.1	47
61	A New Panel-Estimated GFR, Including \hat{I}^2 2-Microglobulin and \hat{I}^2 -Trace Protein and Not Including Race, Developed in a Diverse Population. American Journal of Kidney Diseases, 2021, 77, 673-683.e1.	2.1	47
62	Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 1657-1659.	1.8	47
63	Common Haplotypes at the Adiponectin Receptor 1 (ADIPOR1) Locus Are Associated With Increased Risk of Coronary Artery Disease in Type 2 Diabetes. Diabetes, 2006, 55, 2763-2770.	0.3	45
64	Evidence of a novel type 2 diabetes locus 50 cM centromeric to NIDDM2 on chromosome 12q. Diabetes, 1999, 48, 2246-2251.	0.3	44
65	Increased prevalence of proliferative retinopathy in patients with type 1 diabetes who are deficient in glucose-6-phosphate dehydrogenase. Diabetologia, 2011, 54, 1539-1542.	2.9	43
66	Angiotensinogen Polymorphism M235T, Hypertension, and Nephropathy in Insulin-Dependent Diabetes. Hypertension, 1996, 27, 1134-1139.	1.3	43
67	Exclusion of insulin receptor substrate 2 (IRS-2) as a major locus for early-onset autosomal dominant type 2 diabetes. Diabetes, 1999, 48, 640-642.	0.3	39
68	Preventing Early Renal Loss in Diabetes (PERL) Study: A Randomized Double-Blinded Trial of Allopurinol—Rationale, Design, and Baseline Data. Diabetes Care, 2019, 42, 1454-1463.	4.3	39
69	Genetic variability at the leptin receptor (LEPR) locus is a determinant of plasma fibrinogen and C-reactive protein levels. Atherosclerosis, 2007, 191, 121-127.	0.4	38
70	Improved clinical trial enrollment criterion toÂidentify patients with diabetes at risk of end-stage renal disease. Kidney International, 2017, 92, 258-266.	2.6	38
71	Genetic Modifiers of the Age at Diagnosis of Diabetes (MODY3) in Carriers of Hepatocyte Nuclear Factor-1Â Mutations Map to Chromosomes 5p15, 9q22, and 14q24. Diabetes, 2003, 52, 2182-2186.	0.3	37
72	Circulating high molecular weight adiponectin isoform is heritable and shares a common genetic background with insulin resistance in nondiabetic White Caucasians from Italy: evidence from a familyâ€based study. Journal of Internal Medicine, 2010, 267, 287-294.	2.7	37

#	Article	IF	CITATIONS
73	The <i>ENPP1</i> Q121 Variant Predicts Major Cardiovascular Events in High-Risk Individuals. Diabetes, 2011, 60, 1000-1007.	0.3	37
74	An association between NIDDM and a GAA trinucleotide repeat polymorphism in the X25/frataxin (Friedreich's ataxia) gene. Diabetes, 1998, 47, 851-854.	0.3	35
75	The core clock gene, Bmal1, and its downstream target, the SNARE regulatory protein secretagogin, are necessary for circadian secretion of glucagon-like peptide-1. Molecular Metabolism, 2020, 31, 124-137.	3.0	34
76	Genetic Variants in <i>CPA6</i> and <i>PRPF31</i> Are Associated With Variation in Response to Metformin in Individuals With Type 2 Diabetes. Diabetes, 2018, 67, 1428-1440.	0.3	32
77	Genetic Tools for Coronary Risk Assessment in Type 2 Diabetes: A Cohort Study From the ACCORD Clinical Trial. Diabetes Care, 2018, 41, 2404-2413.	4.3	32
78	Ketone bodies increase glomerular filtration rate in normal man and in patients with Type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 1987, 30, 214-221.	2.9	31
79	IRS1 G972R polymorphism and type 2 diabetes: a paradigm for the difficult ascertainment of the contribution to disease susceptibility of †low-frequency†low-risk†variants. Diabetologia, 2009, 52, 1852-1857.	2.9	31
80	Intensive Risk Factor Management and Cardiovascular Autonomic Neuropathy in Type 2 Diabetes: The ACCORD Trial. Diabetes Care, 2021, 44, 164-173.	4.3	31
81	Can Existing Drugs Approved for Other Indications Retard Renal Function Decline in Patients With Type 1 Diabetes and Nephropathy?. Seminars in Nephrology, 2012, 32, 437-444.	0.6	30
82	Genetic Variants in <i>HSD17B3</i> , <i>SMAD3</i> , and <i>IPO11</i> Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes. Clinical Pharmacology and Therapeutics, 2018, 103, 712-721.	2.3	30
83	Hepatocyte nuclear factor-4gamma: cDNA sequence, gene organization, and mutation screening in early-onset autosomal-dominant type 2 diabetes. Diabetes, 1999, 48, 2099-2102.	0.3	29
84	Serum Resistin and Kidney Function: A Family-Based Study in Non-Diabetic, Untreated Individuals. PLoS ONE, 2012, 7, e38414.	1.1	29
85	Diabetes mellitus correlates with increased biological age as indicated by clinical biomarkers. GeroScience, 2022, 44, 415-427.	2.1	29
86	Glomerular Filtration Rate is Increased in Man by the Infusion of Both <scp>d,l</scp> -3-Hydroxybutyric Acid and Sodium <scp>d,l</scp> -3-Hydroxybutyrate [*] . Journal of Clinical Endocrinology and Metabolism, 1987, 65, 331-338.	1.8	28
87	Designing and implementing sample and data collection for an international genetics study: the Type 1 Diabetes Genetics Consortium (T1DGC). Clinical Trials, 2010, 7, S5-S32.	0.7	28
88	<i>PPARA</i> Polymorphism Influences the Cardiovascular Benefit of Fenofibrate in Type 2 Diabetes: Findings From ACCORD-Lipid. Diabetes, 2020, 69, 771-783.	0.3	28
89	Myocardial Metabolism in Type 1 Diabetic Patients Without Coronary Artery Disease. Diabetic Medicine, 1991, 8, S104-7.	1.2	27
90	Type 2 Diabetes Locus on 12q15: Further Mapping and Mutation Screening of Two Candidate Genes. Diabetes, 2001, 50, 204-208.	0.3	27

#	Article	IF	Citations
91	A hierarchical and modular approach to the discovery of robust associations in genome-wide association studies from pooled DNA samples. BMC Genetics, 2008, 9, 6.	2.7	26
92	Examination of PPP1R3B as a candidate gene for the type 2 diabetes and MODY loci on chromosome 8p23. Annals of Human Genetics, 2006, 70, 587-593.	0.3	25
93	The type 2 diabetes and insulin-resistance locus near IRS1 is a determinant of HDL cholesterol and triglycerides levels among diabetic subjects. Atherosclerosis, 2011, 216, 157-160.	0.4	25
94	Diabetes and Myocardial Fibrosis. JACC: Cardiovascular Imaging, 2022, 15, 796-808.	2.3	25
95	Ketone body metabolism: A physiological and clinical overview. Diabetes/metabolism Reviews, 1989, 5, 299-319.	0.2	24
96	Ddel polymorphism in the AGTR1 gene. Human Molecular Genetics, 1994, 3, 1444-1444.	1.4	24
97	Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Molecular Metabolism, 2015, 4, 593-604.	3.0	24
98	Genetic Variant at the <i>GLUL</i> Locus Predicts All-Cause Mortality in Patients With Type 2 Diabetes. Diabetes, 2015, 64, 2658-2663.	0.3	24
99	ldentification and Importance of Brown Adipose Tissue in Adult Humans. Obstetrical and Gynecological Survey, 2009, 64, 519-520.	0.2	23
100	Joint effect of insulin signaling genes on cardiovascular events and on whole body and endothelial insulin resistance. Atherosclerosis, 2013, 226, 140-145.	0.4	23
101	CTLA4-lg in B7-1-positive diabetic and non-diabetic kidney disease. Diabetologia, 2016, 59, 21-29.	2.9	22
102	A Genetic Locus on Chromosome 2q24 Predicting Peripheral Neuropathy Risk in Type 2 Diabetes: Results From the ACCORD and BARI 2D Studies. Diabetes, 2019, 68, 1649-1662.	0.3	22
103	Substrate availability other than glucose in the brain during euglycemia and insulin-induced hypoglycemia in dogs. Metabolism: Clinical and Experimental, 1990, 39, 46-50.	1.5	20
104	Comprehensive Search for Novel Circulating miRNAs and Axon Guidance Pathway Proteins Associated with Risk of ESKD in Diabetes. Journal of the American Society of Nephrology: JASN, 2021, 32, 2331-2351.	3.0	20
105	A Polymorphism at the <i>IL6ST</i> (gp130) Locus Is Associated With Traits of the Metabolic Syndrome. Obesity, 2008, 16, 205-210.	1.5	19
106	Genetic prediction of common diseases. Still no help for the clinical diabetologist!. Nutrition, Metabolism and Cardiovascular Diseases, 2012, 22, 929-936.	1.1	19
107	Association of circulating levels of nicotinamide phosphoribosyltransferase (NAMPT/Visfatin) and of a frequent polymorphism in the promoter of the NAMPT gene with coronary artery disease in diabetic and non-diabetic subjects. Cardiovascular Diabetology, 2013, 12, 119.	2.7	19
108	Activity and expression of the Na+/H+ exchanger in human endothelial cells cultured in high glucose. Diabetologia, 1995, 38, 785-791.	2.9	18

#	Article	IF	CITATIONS
109	Lowering serum uric acid levels to prevent kidney failure. Nature Reviews Nephrology, 2011, 7, 495-496.	4.1	18
110	Variants in ANGPTL4 and the Risk of Coronary Artery Disease. New England Journal of Medicine, 2016, 375, 2303-2306.	13.9	18
111	Recent advances in the genetics of maturity-onset diabetes of the young and other forms of autosomal dominant diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2000, 7, 203-210.	0.6	17
112	Variations in Adiponectin Receptor Genes and Susceptibility to Type 2 Diabetes in Women: A Tagging-Single Nucleotide Polymorphism Haplotype Analysis. Diabetes, 2007, 56, 1586-1591.	0.3	17
113	The SH2B1 obesity locus is associated with myocardial infarction in diabetic patients and with NO synthase activity in endothelial cells. Atherosclerosis, 2011, 219, 667-672.	0.4	17
114	Results of untargeted analysis using the SOMAscan proteomics platform indicates novel associations of circulating proteins with risk of progression to kidney failure in diabetes. Kidney International, 2022, 102, 370-381.	2.6	17
115	Angiotensin I-converting enzyme (ACE): estimation of DNA haplotypes in unrelated individuals using denaturing gradient gel blots. Human Genetics, 1994, 94, 117-23.	1.8	16
116	Association of the Q121 Variant of ENPP1 Gene With Decreased Kidney Function Among Patients With Type 2 Diabetes. American Journal of Kidney Diseases, 2009, 53, 273-280.	2.1	16
117	Genome-wide linkage screen for stature and body mass index in 3.032 families: evidence for sex- and population-specific genetic effects. European Journal of Human Genetics, 2009, 17, 258-266.	1.4	16
118	Modulation of GLP-1 Levels by a Genetic Variant That Regulates the Cardiovascular Effects of Intensive Glycemic Control in ACCORD. Diabetes Care, 2018, 41, 348-355.	4.3	16
119	Loss-of-Function Mutation in Thiamine Transporter 1 in a Family With Autosomal Dominant Diabetes. Diabetes, 2019, 68, 1084-1093.	0.3	16
120	Porcine and Human Insulin Absorption From Subcutaneous Tissues in Normal and Insulin-Dependent Diabetic Subjects: A Deconvolution-Based Approach [*] . Journal of Clinical Endocrinology and Metabolism, 1988, 67, 551-559.	1.8	15
121	Glutamine to Arginine Substitution at Amino Acid 84 of Mammalian Tribbles Homolog TRIB3 and CKD in Whites With Type 2 Diabetes. American Journal of Kidney Diseases, 2007, 50, 688-689.	2.1	15
122	The role of HSP70 on ENPP1 expression and insulin-receptor activation. Journal of Molecular Medicine, 2009, 87, 139-144.	1.7	15
123	Uric acid and risk of diabetic kidney disease. Journal of Nephrology, 2020, 33, 995-999.	0.9	15
124	Serum Resistin and Glomerular Filtration Rate in Patients with Type 2 Diabetes. PLoS ONE, 2015, 10, e0119529.	1.1	15
125	Elevated C-Reactive Protein Levels Do Not Correspond to Autoimmunity in Type 1 Diabetes. Diabetes Care, 2004, 27, 2769-2770.	4.3	14
126	Joint Effect of Insulin Signaling Genes on Insulin Secretion and Glucose Homeostasis. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1143-E1147.	1.8	14

#	Article	IF	CITATIONS
127	Estimation of Mortality Risk in Type 2 Diabetic Patients (ENFORCE): An Inexpensive and Parsimonious Prediction Model. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4900-4908.	1.8	14
128	Association of the 1q25 Diabetes-Specific Coronary Heart Disease Locus With Alterations of the \hat{I}^3 -Glutamyl Cycle and Increased Methylglyoxal Levels in Endothelial Cells. Diabetes, 2020, 69, 2206-2216.	0.3	14
129	Association of hGrb10 genetic variations with type 2 diabetes in Caucasian subjects. Diabetes Care, 2006, 29, $1181-3$.	4.3	14
130	Genetic Markers of Increased Susceptibility to Diabetic Nephropathy. Hormone Research in Paediatrics, 1998, 50, 6-11.	0.8	13
131	Infrequent TRIB3 coding variants and coronary artery disease in type 2 diabetes. Atherosclerosis, 2015, 242, 334-339.	0.4	11
132	A Type 2 Diabetes Subtype Responsive to ACCORD Intensive Glycemia Treatment. Diabetes Care, 2021, 44, 1410-1418.	4.3	10
133	Kidney hemodynamics after ketone body and amino acid infusion in normal and IDDM subjects. Diabetes, 1989, 38, 75-83.	0.3	10
134	Lipoprotein compositional abnormalities in type 1 (insulin-dependent) diabetic patients. Acta Diabetologica, 1993, 30, 11-16.	1.2	9
135	Mutation Screening of the Neurogenin-3 Gene in Autosomal Dominant Diabetes 1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2320-2322.	1.8	9
136	<i>GRB10</i> gene and type 2 diabetes in Whites. Journal of Internal Medicine, 2010, 267, 132-133.	2.7	9
137	Trinucleotide repeats at the rad locus. Allele distributions in NIDDM and mapping to a 3-cM region on chromosome 16q. Diabetes, 1995, 44, 243-247.	0.3	9
138	Identification of a locus modulating serum C-reactive protein levels on chromosome 5p15. Atherosclerosis, 2008, 196, 863-870.	0.4	8
139	Molecular cloning of the human rad gene: gene structure and complete nucleotide sequence. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1996, 1316, 145-148.	1.8	7
140	Mutations in the SLC30A8 gene are not a major cause of MODY or other forms of early-onset, autosomal dominant type 2 diabetes. Diabetologia, 2007, 50, 2224-2226.	2.9	7
141	Joint effect of insulin signaling genes on all-cause mortality. Atherosclerosis, 2014, 237, 639-644.	0.4	7
142	Ketone body kineticsin vivo using simultaneous administration of acetoacetate and 3-hydroxybutyrate labelled with stable isotopes. Acta Diabetologica Latina, 1990, 27, 41-51.	0.2	6
143	Molecular characterization of a DDEI melting polymorphism at the angiotensin I-converting enzyme (ACE) locus. Human Mutation, 1994, 4, 155-157.	1.1	6
144	The SH2B1 obesity locus and abnormal glucose homeostasis: Lack of evidence for association from a meta-analysis in individuals of European ancestry. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 1043-1049.	1.1	6

#	Article	IF	CITATIONS
145	Mutation Screening of the Neurogenin-3 Gene in Autosomal Dominant Diabetes. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2320-2322.	1.8	6
146	The 9p21 coronary artery disease locus and kidney dysfunction in patients with Type 2 diabetes mellitus. Nephrology Dialysis Transplantation, 2012, 27, 4411-4413.	0.4	5
147	Leveraging Genetics to Improve Cardiovascular Health in Diabetes: The 2018 Edwin Bierman Award Lecture. Diabetes, 2019, 68, 479-489.	0.3	5
148	Serum Orotidine: A Novel Biomarker of Increased CVD Risk in Type 2 Diabetes Discovered Through Metabolomics Studies. Diabetes Care, 2022, 45, 1882-1892.	4.3	5
149	Lack of evidence for interaction between APM1 and PPARgamma2 genes in modulating insulin sensitivity in nondiabetic Caucasians from Italy. Journal of Internal Medicine, 2005, 257, 315-317.	2.7	4
150	A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Human Molecular Genetics, 2005, 14, 3973-3973.	1.4	4
151	Disentangling the heterogeneity of adulthood-onset non-autoimmune diabetes: a little closer but lot more to do. Current Opinion in Pharmacology, 2020, 55, 157-164.	1.7	4
152	Gain of Function of Malate Dehydrogenase 2 and Familial Hyperglycemia. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 668-684.	1.8	4
153	Glucose and ketone body turnover in carnitine-palmitoyl-transferase deficiency. Metabolism: Clinical and Experimental, 1987, 36, 821-826.	1.5	3
154	Type I insulin-dependent diabetic patients show an impaired renal hemodynamic response to protein intake. The Journal of Diabetic Complications, 1988, 2, 27-29.	0.2	3
155	A functional variant in the gene 3′ untranslated region regulates <i>HSP70</i> expression and is a potential candidate for insulin resistanceâ€related abnormalities. Journal of Internal Medicine, 2010, 267, 237-240.	2.7	3
156	Autosomal dominant diabetes associated with a novel ZYG11A mutation resulting in cell cycle arrest in beta-cells. Molecular and Cellular Endocrinology, 2021, 522, 111126.	1.6	3
157	Contribution of rare variants in monogenic diabetes-genes to early-onset type 2 diabetes. Diabetes and Metabolism, 2022, 48, 101353.	1.4	3
158	The IRS1 G972R polymorphism and glomerular filtration rate in patients with type 2 diabetes of European ancestry. Nephrology Dialysis Transplantation, 2013, 28, 3031-3034.	0.4	2
159	Insufficient Evidence for Interaction Between Haptoglobin Phenotypes andÂlntensive Glycemic Control on Cardiovascular Outcomes. Journal of the American College of Cardiology, 2020, 75, 2995-2996.	1.2	2
160	Malate Dehydrogenase 2 (MDH2) as a New Diabetogene Causing Hyperglycemia in Families with Multigenerational Diabetes. Diabetes, 2018, 67, 262-OR.	0.3	2
161	Molecular methods for the study of the genetic determinants of nephropathy in type 1 (insulin-dependent) diabetes. Acta Diabetologica, 1992, 29, 136-141.	1.2	1
162	Adipokine genes and the insulin-resistance syndrome. International Congress Series, 2003, 1253, 63-71.	0.2	1

#	Article	IF	CITATIONS
163	Why type 2 diabetes is not an equal opportunity disease: recent progress in genetics. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 389-390.	1.3	1
164	Four RSAI restriction fragment melting polymorphisms in the region of the insulin receptor gene encoding for the alpha subunit. Clinical Genetics, 2008, 44, 279-280.	1.0	1
165	Genome-wide associations and metabolic disease: the big revolution. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 363-365.	1.3	1
166	COMMENT: Genetic Variability in Insulin Action Inhibitor Ikk (IKBKB) Does Not Play a Major Role in the Development of Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1894-1897.	1.8	1
167	COMMENT: Genetic Variability in Insulin Action Inhibitor Ikkβ (<i>IKBKB</i>) Does Not Play a Major Role in the Development of Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1894-1897.	1.8	0
168	Genetics of Diabetic Micro- and Macrovascular Complications. , 2016, , 153-180.		0
169	A Few Words of Introduction From Your New Diabetes Editorial Board. Diabetes, 2017, 66, 3-4.	0.3	0
170	Diabetes susceptibility at IDDM2 cannot be positively mapped to the VNTR locus of the insulin gene. Diabetologia, 1996, 39, 594-599.	2.9	O