Paula Oulego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229635/publications.pdf

Version: 2024-02-01

65 1,869
papers citations

236925 289244 40 h-index g-index

65 65 docs citations

65 times ranked 2082 citing authors

#	Article	IF	CITATIONS
1	Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresource Technology, 2010, 101, 8859-8867.	9.6	186
2	Graphene-family nanomaterials in wastewater treatment plants. Chemical Engineering Journal, 2017, 313, 121-135.	12.7	116
3	Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. Water (Switzerland), 2020, 12, 1431.	2.7	103
4	Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review. Science of the Total Environment, 2017, 584-585, 921-934.	8.0	95
5	Novel biosorbents from almond shells: Characterization and adsorption properties modeling for Cu(II) ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2017, 5, 2944-2954.	6.7	70
6	Radical-based degradation of sulfamethoxazole via UVA/PMS-assisted photocatalysis, driven by magnetically separable Fe3O4@CeO2@BiOI nanospheres. Separation and Purification Technology, 2021, 267, 118665.	7.9	64
7	CO ₂ Hydrogenation at Atmospheric Pressure and Low Temperature Using Plasma-Enhanced Catalysis over Supported Cobalt Oxide Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 17397-17407.	6.7	56
8	Impact of leachate composition on the advanced oxidation treatment. Water Research, 2016, 88, 389-402.	11.3	55
9	Photocatalytic activation of peroxymonosulfate (PMS) by novel mesoporous Ag/ZnO@NiFe2O4 nanorods, inducing radical-mediated acetaminophen degradation under UVA irradiation. Chemosphere, 2021, 277, 130271.	8.2	55
10	Protein recovery from solubilized sludge by hydrothermal treatments. Waste Management, 2017, 67, 278-287.	7.4	50
11	Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water. Journal of Environmental Management, 2020, 270, 110820.	7.8	45
12	Valorization of steel slag towards a Fenton-like catalyst for the degradation of paraben by activated persulfate. Chemical Engineering Journal, 2019, 360, 728-739.	12.7	41
13	Environmental properties of phosphonium, imidazolium and ammonium cation-based ionic liquids as potential lubricant additives. Journal of Molecular Liquids, 2018, 272, 937-947.	4.9	40
14	Highly Selective Oxidation of Ethyl Lactate to Ethyl Pyruvate Catalyzed by Mesoporous Vanadia–Titania. ACS Catalysis, 2018, 8, 2365-2374.	11.2	38
15	Novel fatty acid anion-based ionic liquids: Contact angle, surface tension, polarity fraction and spreading parameter. Journal of Molecular Liquids, 2019, 288, 110995.	4.9	38
16	Biodegradation of dissolved humic substances by fungi. Applied Microbiology and Biotechnology, 2018, 102, 3497-3511.	3.6	35
17	Heterogeneous catalytic ozonation and peroxone-mediated removal of Acetaminophen using natural and modified hematite-rich soil, as efficient and environmentally friendly catalysts. Applied Catalysis B: Environmental, 2022, 301, 120786.	20.2	35
18	The wet oxidation of aqueous humic acids. Journal of Hazardous Materials, 2020, 396, 122402.	12.4	34

#	Article	IF	Citations
19	Synthesis of a novel, ternary AgI/CeO2@g-C3N4 nanocomposite with exceptional stability and reusability for visible light-assisted photocatalytic reduction of hexavalent chromium. Applied Surface Science, 2021, 555, 149692.	6.1	32
20	Impact of anaerobic digestion and centrifugation/decanting processes in bacterialÂcommunities fractions. Journal of Bioscience and Bioengineering, 2018, 126, 742-749.	2.2	31
21	Enhanced Cu(II) adsorption using sodium trimetaphosphate–modified cellulose beads: equilibrium, kinetics, adsorption mechanisms, and reusability. Environmental Science and Pollution Research, 2021, 28, 46523-46539.	5.3	30
22	Physicochemical, traction and tribofilm formation properties of three octanoate-, laurate- and palmitate-anion based ionic liquids. Journal of Molecular Liquids, 2019, 284, 639-646.	4.9	29
23	Development and characterization of egg yolk and egg yolk fractions edible films. Food Hydrocolloids, 2017, 70, 229-239.	10.7	28
24	Relationships between the physical properties and biodegradability and bacteria toxicity of fatty acid-based ionic liquids. Journal of Molecular Liquids, 2019, 292, 111451.	4.9	28
25	Biopolymer composite from cellulose nanocrystals of almond (Prunus dulcis) shell as effective adsorbents for Cu2+ ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2021, 9, 105139.	6.7	28
26	Production of carboxylic acids from the non-lignin residue of black liquor by hydrothermal treatments. Bioresource Technology, 2019, 284, 105-114.	9.6	26
27	Synthesis and characterization of eco-friendly cellulose beads for copper (II) removal from aqueous solutions. Environmental Science and Pollution Research, 2020, 27, 23447-23463.	5.3	26
28	Simultaneous oxidation of cyanide and thiocyanate at high pressure and temperature. Journal of Hazardous Materials, 2014, 280, 570-578.	12.4	24
29	Sludge hydrothermal treatments. Oxidising atmosphere effects on biopolymers and physical properties. Journal of Environmental Management, 2018, 206, 284-290.	7.8	24
30	Kraft black liquor as a renewable source of value-added chemicals. Chemical Engineering Journal, 2022, 448, 137728.	12.7	24
31	Tertiary treatment of biologically pre-treated landfill leachates by non-catalytic wet oxidation. Chemical Engineering Journal, 2015, 273, 647-655.	12.7	22
32	Characterisation of the wet oxidation of black liquor for its integration in Kraft paper mills. Chemical Engineering Journal, 2021, 405, 126610.	12.7	21
33	Effect of wet oxidation on the fingerprints of polymeric substances from an activated sludge. Water Research, 2016, 105, 282-290.	11.3	18
34	Formation and Degradation of Soluble Biopolymers during Wet Oxidation of Sludge. ACS Sustainable Chemistry and Engineering, 2017, 5, 3011-3018.	6.7	18
35	Wet oxidation of the structural sludge fractions. Journal of Cleaner Production, 2017, 168, 1163-1170.	9.3	18
36	Selective Aerobic Oxidation of Lactate to Pyruvate Catalyzed by Vanadiumâ€Nitrogenâ€Doped Carbon Nanosheets. ChemCatChem, 2019, 11, 3381-3387.	3.7	18

3

#	Article	IF	Citations
37	Flow cytometric characterization of bacterial abundance and physiological status in a nitrifying-denitrifying activated sludge system treating landfill leachate. Environmental Science and Pollution Research, 2017, 24, 21262-21271.	5.3	17
38	Model-free kinetics applied to evaluate the long-term thermal stability of three [NTf2] anion-based ionic liquids. Thermochimica Acta, 2017, 656, 70-84.	2.7	17
39	Self-Exfoliated Synthesis of Transition Metal Phosphate Nanolayers for Selective Aerobic Oxidation of Ethyl Lactate to Ethyl Pyruvate. ACS Catalysis, 2020, 10, 3958-3967.	11.2	17
40	Wet oxidation of real coke wastewater containing high thiocyanate concentration. Journal of Environmental Management, 2014, 132, 16-23.	7.8	16
41	The effect of the synthetic route on the structural, textural, morphological and catalytic properties of iron(<scp>iii</scp>) oxides and oxyhydroxides. Dalton Transactions, 2016, 45, 9446-9459.	3.3	16
42	Effect of landfill leachate ageing on ultrafiltration performance and membrane fouling behaviour. Journal of Water Process Engineering, 2020, 36, 101291.	5.6	16
43	Separation and purification techniques for the recovery of added-value biocompounds from waste activated sludge. A review. Resources, Conservation and Recycling, 2022, 182, 106327.	10.8	16
44	Deriving an É'-Fe2O3/g-C3N4 nanocomposite from a naturally hematite-rich soil, for dual photocatalytic and photo-Fenton degradation of Acetaminophen under visible light. Separation and Purification Technology, 2022, 299, 121723.	7.9	16
45	Leachates and natural organic matter. A review of their biotreatment using fungi. Waste Management, 2019, 96, 108-120.	7.4	15
46	Eggshell-supported Catalysts for the Advanced Oxidation Treatment of Humic Acid Polluted Wastewaters. Water (Switzerland), 2020, 12, 100.	2.7	15
47	Metagenomic Analysis of Bacterial Communities from a Nitrification–Denitrification Treatment of Landfill Leachates. Clean - Soil, Air, Water, 2019, 47, 1900156.	1.1	11
48	A proposal for the classification of sludge products throughout hydrothermal treatment. Chemical Engineering Journal, 2022, 430, 132746.	12.7	11
49	Iron (II) as catalyst for thiocyanate wet oxidation: Mechanism and modelization. Chemical Engineering Journal, 2017, 316, 813-822.	12.7	10
50	Characterization of sinter flue dust to enhance alternative recycling and environmental impact at disposal. Waste Management, 2018, 79, 251-259.	7.4	10
51	Recovery of organic acids from pre-treated Kraft black liquor using ultrafiltration and liquid-liquid extraction. Separation and Purification Technology, 2022, 284, 120274.	7.9	10
52	Macronutrient solubilisation during hydrothermal treatment of sewage sludge. Journal of Water Process Engineering, 2021, 43, 102270.	5.6	9
53	Hydrothermal processing of Kraft lignin for carboxylic acid production. Journal of Environmental Chemical Engineering, 2019, 7, 103472.	6.7	8
54	Physico-chemical pre-treatments of anaerobic digestion liquor for aerobic treatment. Journal of Environmental Management, 2020, 274, 111189.	7.8	7

#	Article	IF	CITATIONS
55	Heavy metal solubilisation during the hydrothermal treatment of sludge. Journal of Environmental Management, 2021, 286, 112120.	7.8	7
56	Kinetics and Pathways of Cyanide Degradation at High Temperatures and Pressures. Environmental Science & Environmental Science	10.0	6
57	Miscibility, corrosion and environmental properties of six hexanoate- and sulfonate-based protic ionic liquids. Journal of Molecular Liquids, 2021, 322, 114561.	4.9	6
58	Ruthenium on Alkaliâ€Exfoliated Ti ₃ (Al _{0.8} Sn _{0.2})C ₂ MAX Phase Catalyses Reduction of 4â€Nitroaniline with Ammonia Borane. ChemCatChem, 2021, 13, 3470-3478.	3.7	6
59	Easy and Cost Effective Preparation of Cellulose Beads from Almond Shell: Characterization and Application in Copper (II) Adsorption from Aqueous Solutions. Advances in Science, Technology and Innovation, 2018, , 175-177.	0.4	2
60	Non-Energetic Chemical Products by Fermentation of Hydrolyzed Sewage Sludge. Sustainability, 2021, 13, 5499.	3.2	2
61	Effects of oxidising atmosphere on brewer's yeast hydrothermal treatment and subsequent biopolymer recovery. Chemical Engineering Journal, 2021, 421, 127736.	12.7	1
62	Novel Biosorbents from Tunisian Date Palm "Bouhattam―Seeds for Copper(II) Ion Adsorption. Environmental Science and Engineering, 2021, , 809-814.	0.2	1
63	Cu(II) Ions Removal on Functionalized Cellulose Beads from Tunisian Almond (Prunus Dulcis) Shell. Environmental Science and Engineering, 2021, , 65-71.	0.2	0
64	Solubilisation of heavy metals and main macronutrients during the thermal hydrolysis of sewage sludge. , 0 , , .		0
65	Recovery of biomolecules of industrial interest from hydrothermally pretreated sewage sludge., 0,,.		O