
Xiongwen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351, 271-275.	12.6	634
2	Cellular Basis of Abnormal Calcium Transients of Failing Human Ventricular Myocytes. Circulation Research, 2003, 92, 651-658.	4.5	420
3	Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. Journal of Clinical Investigation, 2007, 117, 2431-2444.	8.2	359
4	The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature, 2017, 545, 93-97.	27.8	294
5	Bone marrow cells adopt the cardiomyogenic fate <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17783-17788.	7.1	292
6	L-Type Ca 2+ Channel Density and Regulation Are Altered in Failing Human Ventricular Myocytes and Recover After Support With Mechanical Assist Devices. Circulation Research, 2002, 91, 517-524.	4.5	254
7	G Protein–Coupled Receptor Kinase 2 Ablation in Cardiac Myocytes Before or After Myocardial Infarction Prevents Heart Failure. Circulation Research, 2008, 103, 413-422.	4.5	210
8	Ca 2+ Influx–Induced Sarcoplasmic Reticulum Ca 2+ Overload Causes Mitochondrial-Dependent Apoptosis in Ventricular Myocytes. Circulation Research, 2005, 97, 1009-1017.	4.5	181
9	Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury. Circulation, 2017, 136, 834-848.	1.6	174
10	GDF11 Does Not Rescue Aging-Related Pathological Hypertrophy. Circulation Research, 2015, 117, 926-932.	4.5	158
11	How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart?. Stem Cells International, 2016, 2016, 1-14.	2.5	158
12	Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clinical Science, 2015, 129, 675-685.	4.3	145
13	Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. Journal of Clinical Investigation, 2012, 122, 280-290.	8.2	145
14	Crucial Role of miR-433 in Regulating Cardiac Fibrosis. Theranostics, 2016, 6, 2068-2083.	10.0	134
15	CaMKII Negatively Regulates Calcineurin–NFAT Signaling in Cardiac Myocytes. Circulation Research, 2009, 105, 316-325.	4.5	129
16	Protein Kinase Cα, but Not PKCβ or PKCγ, Regulates Contractility and Heart Failure Susceptibility. Circulation Research, 2009, 105, 194-200.	4.5	127
17	Cardiotoxic and Cardioprotective Features of Chronic Î ² -Adrenergic Signaling. Circulation Research, 2013, 112, 498-509.	4.5	126
18	Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Science Translational Medicine, 2015, 7, 277ra31.	12.4	126

#	Article	IF	CITATIONS
19	Adolescent Feline Heart Contains a Population of Small, Proliferative Ventricular Myocytes With Immature Physiological Properties. Circulation Research, 2007, 100, 536-544.	4.5	112
20	Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction. Circulation Research, 2014, 115, 567-580.	4.5	101
21	Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2011, 50, 460-470.	1.9	100
22	LETM1â€dependent mitochondrial Ca ²⁺ flux modulates cellular bioenergetics and proliferation. FASEB Journal, 2014, 28, 4936-4949.	0.5	99
23	Prolyl Hydroxylase Domain Protein 2 Silencing Enhances the Survival and Paracrine Function of Transplanted Adipose-Derived Stem Cells in Infarcted Myocardium. Circulation Research, 2013, 113, 288-300.	4.5	97
24	STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 87, 38-47.	1.9	97
25	Targeting HO-1 by Epigallocatechin-3-Gallate Reduces Contrast-Induced Renal Injury via Anti-Oxidative Stress and Anti-Inflammation Pathways. PLoS ONE, 2016, 11, e0149032.	2.5	90
26	Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy. Cell Reports, 2017, 18, 571-582.	6.4	90
27	Mitochondrial DNA Oxidative Damage Contributes to Cardiomyocyte Ischemia/Reperfusionâ€Injury in Rats: Cardioprotective Role of Lycopene. Journal of Cellular Physiology, 2015, 230, 2128-2141.	4.1	89
28	Circulating â€~lncRNA OTTHUMT00000387022' from monocytes as a novel biomarker for coronary artery disease. Cardiovascular Research, 2016, 112, 714-724.	3.8	88
29	Adrenergic Regulation of Cardiac Contractility Does Not Involve Phosphorylation of the Cardiac Ryanodine Receptor at Serine 2808. Circulation Research, 2008, 102, e65-72.	4.5	87
30	L-Type Ca2+Channel α1cSubunit Isoform Switching in Failing Human Ventricular Myocardium. Journal of Molecular and Cellular Cardiology, 2000, 32, 973-984.	1.9	85
31	Repair of the Injured Adult Heart Involves New Myocytes Potentially Derived From Resident Cardiac Stem Cells. Circulation Research, 2011, 108, 1226-1237.	4.5	85
32	Hyperphosphorylation of the Cardiac Ryanodine Receptor at Serine 2808 Is Not Involved in Cardiac Dysfunction After Myocardial Infarction. Circulation Research, 2012, 110, 831-840.	4.5	84
33	α1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. Journal of Clinical Investigation, 2009, 119, 3787-3796.	8.2	83
34	Alterations in Early Action Potential Repolarization Causes Localized Failure of Sarcoplasmic Reticulum Ca 2+ Release. Circulation Research, 2005, 96, 543-550.	4.5	81
35	Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages. PLoS ONE, 2016, 11, e0155076.	2.5	78
36	Insulin Inhibits Cardiac Contractility by Inducing a Gi-Biased β2-Adrenergic Signaling in Hearts. Diabetes, 2014, 63, 2676-2689.	0.6	77

#	Article	IF	CITATIONS
37	Ca ²⁺ Influx Through T- and L-Type Ca ²⁺ Channels Have Different Effects on Myocyte Contractility and Induce Unique Cardiac Phenotypes. Circulation Research, 2008, 103, 1109-1119.	4.5	69
38	Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6578-6583.	7.1	67
39	Analyses of caspase-1-regulated transcriptomes in various tissues lead to identification of novel IL-1β-, IL-18- and sirtuin-1-independent pathways. Journal of Hematology and Oncology, 2017, 10, 40.	17.0	64
40	Pim-1 kinase antagonizes aspects of myocardial hypertrophy and compensation to pathological pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13889-13894.	7.1	61
41	Negative inotropic effects of high-mobility group box 1 protein in isolated contracting cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1490-H1496.	3.2	60
42	Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myocardial infarction. Clinical Science, 2017, 131, 2919-2932.	4.3	58
43	Autophagy Plays an Important Role in Anti-inflammatory Mechanisms Stimulated by Alpha7 Nicotinic Acetylcholine Receptor. Frontiers in Immunology, 2017, 8, 553.	4.8	58
44	Regulated Overexpression of the A 1 -Adenosine Receptor in Mice Results in Adverse but Reversible Changes in Cardiac Morphology and Function. Circulation, 2006, 114, 2240-2250.	1.6	56
45	GSK-3α directly regulates β-adrenergic signaling and the response of the heart to hemodynamic stress in mice. Journal of Clinical Investigation, 2010, 120, 2280-2291.	8.2	54
46	Inflammation and cardiac dysfunction during sepsis, muscular dystrophy, and myocarditis. Burns and Trauma, 2013, 1, 109.	0.7	50
47	A cellular mechanism of muscle memory facilitates mitochondrial remodelling following resistance training. Journal of Physiology, 2018, 596, 4413-4426.	2.9	47
48	Interaction of the Joining Region in Junctophilin-2 With the L-Type Ca ²⁺ Channel Is Pivotal for Cardiac Dyad Assembly and Intracellular Ca ²⁺ Dynamics. Circulation Research, 2021, 128, 92-114.	4.5	45
49	Increasing Cardiac Contractility After Myocardial Infarction Exacerbates Cardiac Injury and Pump Dysfunction. Circulation Research, 2010, 107, 800-809.	4.5	43
50	Inhibition of type 5 phosphodiesterase counteracts β2-adrenergic signalling in beating cardiomyocytes. Cardiovascular Research, 2015, 106, 408-420.	3.8	40
51	Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 2016, 90, 21-29.	1.9	39
52	Fatty Acid Oxidation Promotes Cardiomyocyte Proliferation Rate but Does Not Change Cardiomyocyte Number in Infant Mice. Frontiers in Cell and Developmental Biology, 2019, 7, 42.	3.7	39
53	Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction. Circulation Research, 2017, 121, 125-136.	4.5	36
54	Evidence for K+-Dependent HCO3â^' Utilization in the Marine Diatom Phaeodactylum tricornutum. Plant Physiology, 2006, 141, 731-736.	4.8	35

5

#	Article	IF	CITATIONS
55	β ₁ -Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H322-H331.	3.2	35
56	Cardiac G-Protein–Coupled Receptor Kinase 2 Ablation Induces a Novel Ca ²⁺ Handling Phenotype Resistant to Adverse Alterations and Remodeling After Myocardial Infarction. Circulation, 2012, 125, 2108-2118.	1.6	34
57	A novel porcupine inhibitor blocks WNT pathways and attenuates cardiac hypertrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3459-3467.	3.8	34
58	Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease. Clinical Science, 2013, 125, 319-327.	4.3	33
59	Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Frontiers in Physiology, 2020, 11, 574030.	2.8	33
60	Blunted cardiac beta-adrenergic response as an early indication of cardiac dysfunction in Duchenne muscular dystrophy. Cardiovascular Research, 2014, 103, 60-71.	3.8	32
61	Circulating "LncPPARÎ′―From Monocytes as a Novel Biomarker for Coronary Artery Diseases. Medicine (United States), 2016, 95, e2360.	1.0	32
62	Cardiomyocyte PKA Ablation Enhances Basal Contractility While Eliminates Cardiac Î ² -Adrenergic Response Without Adverse Effects on the Heart. Circulation Research, 2019, 124, 1760-1777.	4.5	30
63	Reduced effects of BAY K 8644 on L-type Ca ²⁺ current in failing human cardiac myocytes are related to abnormal adrenergic regulation. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2257-H2267.	3.2	28
64	Increased expression of Syne1/nesprinâ€1 facilitates nuclear envelope structure changes in embryonic stem cell differentiation. Developmental Dynamics, 2011, 240, 2245-2255.	1.8	27
65	β-Adrenergic Stimulation Increases Cav3.1 Activity in Cardiac Myocytes through Protein Kinase A. PLoS ONE, 2012, 7, e39965.	2.5	27
66	miR-301a-PTEN-AKT Signaling Induces Cardiomyocyte Proliferation and Promotes Cardiac Repair Post-MI. Molecular Therapy - Nucleic Acids, 2020, 22, 251-262.	5.1	26
67	Enhanced basal contractility but reduced excitation-contraction coupling efficiency and β-adrenergic reserve of hearts with increased Cav1.2 activity. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H519-H528.	3.2	25
68	The δA isoform of calmodulin kinase II mediates pathological cardiac hypertrophy by interfering with the HDAC4-MEF2 signaling pathway. Biochemical and Biophysical Research Communications, 2011, 409, 125-130.	2.1	25
69	Persistent increases in Ca2+ influx through Cav1.2 shortens action potential and causes Ca2+ overload-induced afterdepolarizations and arrhythmias. Basic Research in Cardiology, 2016, 111, 4.	5.9	25
70	Gastrin Protects Against Myocardial Ischemia/Reperfusion Injury via Activation of RISK (Reperfusion) Tj ETQq0 C American Heart Association, 2018, 7, .) 0 rgBT /0 3.7	verlock 10 Tf 24
71	Compartmentalization of Î ² -adrenergic signals in cardiomyocytes. Trends in Cardiovascular Medicine, 2013, 23, 250-256.	4.9	23
72	Protein Kinase D3 Is a Pivotal Activator of Pathological Cardiac Hypertrophy by Selectively Increasing the Expression of Hypertrophic Transcription Factors. Journal of Biological Chemistry, 2011, 286, 40782-40791.	3.4	22

5

#	Article	IF	CITATIONS
73	Calcineurin inhibition normalizes β-adrenergic responsiveness in the spontaneously hypertensive rat. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3122-H3129.	3.2	19
74	Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart. Cardiovascular Research, 2017, 113, 749-759.	3.8	19
75	Regulation of L-type calcium channel by phospholemman in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2015, 84, 104-111.	1.9	18
76	Intracellular sodium determines frequency-dependent alterations in contractility in hypertrophied feline ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1129-H1138.	3.2	15
77	Increasing Tâ€ŧype calcium channel activity by βâ€adrenergic stimulation contributes to βâ€adrenergic regulation of heart rates. Journal of Physiology, 2018, 596, 1137-1151.	2.9	15
78	T-type Ca2+ channels regulate the exit of cardiac myocytes from the cell cycle after birth. Journal of Molecular and Cellular Cardiology, 2013, 62, 122-130.	1.9	14
79	Cardiac troponin I exacerbates myocardial ischaemia/reperfusion injury by inducing the adhesion of monocytes to vascular endothelial cells via a TLR4/NF-κB-dependent pathway. Clinical Science, 2016, 130, 2279-2293.	4.3	14
80	Metformin promotes the survival of transplanted cardiosphere-derived cells thereby enhancing their therapeutic effect against myocardial infarction. Stem Cell Research and Therapy, 2017, 8, 17.	5.5	14
81	Reduced Myocardial Reserve in Young X-Linked Muscular Dystrophy Mice Diagnosed by Two-Dimensional Strain Analysis Combined withÂStress Echocardiography. Journal of the American Society of Echocardiography, 2017, 30, 815-827.e9.	2.8	12
82	Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H620-H630.	3.2	12
83	Acetylation of SERCA2a, Another Target for Heart Failure Treatment?. Circulation Research, 2019, 124, 1285-1287.	4.5	12
84	Combined administration of anisodamine and neostigmine rescued acute lethal crush syndrome through α7nAChR-dependent JAK2-STAT3 signaling. Scientific Reports, 2016, 6, 37709.	3.3	10
85	Syngeneic AAV Pseudo-particles Potentiate Gene Transduction of AAV Vectors. Molecular Therapy - Methods and Clinical Development, 2017, 4, 149-158.	4.1	10
86	Hepatic PKA inhibition accelerates the lipid accumulation in liver. Nutrition and Metabolism, 2019, 16, 69.	3.0	10
87	Inhibition of angiotensin II Gq signaling augments β-adrenergic receptor mediated effects in a renal artery stenosis model of high blood pressure. Journal of Molecular and Cellular Cardiology, 2009, 46, 100-107.	1.9	8
88	Preclinical cardiovascular changes in children with obesity: A real-time 3-dimensional speckle tracking imaging study. PLoS ONE, 2018, 13, e0205177.	2.5	8
89	Cross talk between serine/threonine and tyrosine kinases regulates ADP-induced thromboxane generation in platelets. Thrombosis and Haemostasis, 2015, 114, 558-568.	3.4	7
90	With or Without Langendorff. Circulation Research, 2016, 119, 888-890.	4.5	7

#	Article	IF	CITATIONS
91	Phosphorus limitation for the colony formation, growth and photosynthesis of an edible cyanobacterium, Nostoc sphaeroides. Biotechnology Letters, 2012, 34, 137-143.	2.2	6
92	LIGHT DEPENDENCY OF PHOTOSYNTHETIC RECOVERY DURING WETTING AND THE ACCLIMATION OF PHOTOSYNTHETIC APPARATUS TO LIGHT FLUCTUATION IN A TERRESTRIAL CYANOBACTERIUM <i>NOSTOC COMMUNE</i> ¹ . Journal of Phycology, 2011, 47, 1063-1071.	2.3	5
93	Physiological profiles associated with ceasing growth of unfertilized eggs produced by unmated queens in the subterranean termite <i>Reticulitermes chinensis</i> . Biology Open, 2016, 5, 756-763.	1.2	3
94	Bazedoxifene Regulates Th17 Immune Response to Ameliorate Experimental Autoimmune myocarditis via Inhibition of STAT3 Activation. Frontiers in Pharmacology, 2020, 11, 613160.	3.5	3
95	Effect of Clâ^' on photosynthetic bicarbonate uptake in two cyanobacteria Microcystis aeruginosa and Synechocystis PCC6803. Science Bulletin, 2009, 54, 1197-1203.	9.0	2
96	A low voltage activated Ca2+ current found in a subset of human ventricular myocytes. Channels, 2020, 14, 231-245.	2.8	2
97	GW25-e5273 Manipulating PHD2 to Promote the Therapeutic Effect of Stem Cell Transplantation for Myocardial Infarction. Journal of the American College of Cardiology, 2014, 64, C12-C13.	2.8	1
98	Paroxetine-Mediated GRK2 Inhibition Reverses Cardiac Dysfunction and Remodeling After Myocardial Infarction. Journal of Cardiac Failure, 2015, 21, S109.	1.7	1
99	Phosphodiesterase III (PDE III) inhibition potentiates Ca-induced, not voltage-gated, sarcoplasmic reticulum Ca release. Journal of Molecular and Cellular Cardiology, 2001, 33, A20.	1.9	0
100	Constitutive Activation of CaMKII Reduces Cardiac Function and Viability in Feline Ventricular Myocytes. Journal of Cardiac Failure, 2007, 13, S94-S95.	1.7	0
101	Calcium Signaling Simultaneously Activates Hypertrophic Gene Transcription and Impairs Contractility in Cardiac Myocytes. Journal of Cardiac Failure, 2007, 13, S85.	1.7	0
102	Enhancement of the Cav3.1 Channel Activity by PKA in Ventricular Myocytes of a1G Transgenic Mice. Biophysical Journal, 2009, 96, 182a.	0.5	0
103	Increasing Cardiac Contractility after Myocardial Infarction Exacerbates Cardiac Injury and Pump Dysfunction. Biophysical Journal, 2009, 96, 258a.	0.5	0
104	Blebbistatin Protects Rodent Myocytes from Death in Primary Culture via Inhibiting Na/Ca Exchange. Biophysical Journal, 2011, 100, 579a.	0.5	0
105	GW28-e1093 Features of Adult Mammalian Cardiomyocyte Proliferation with Complete Cytokinesis. Journal of the American College of Cardiology, 2017, 70, C43.	2.8	0
106	Research on the Expression and Regulatory Mechanism of Breast Cancer Susceptibility Gene-1 on Cell of Skin Cancer in Different Classification. Journal of Biomaterials and Tissue Engineering, 2021, 11, 756-760.	0.1	0
107	Cavβ2a TG mice treated with hight fat diet and Lâ€Name is a model for HFpEF. FASEB Journal, 2021, 35, .	0.5	0

Pharmacology of L-Type and T-Type Calcium Channels in the Heart. , 2004, , 133-142.

0

#	Article	IF	CITATIONS
109	Abstract 21022: Increasing Cav1.2 in Smooth Muscle Cells Induces Both Systemic and Pulmonary Hypertension via Inhibiting Endothelium-Dependent Relaxation. Circulation, 2017, 136, .	1.6	Ο
110	Abstract 20966: Increasing Cav1.2 in Smooth Muscle Cells Has Different Effects on Vascular Remodeling Dependent of Insults. Circulation, 2017, 136, .	1.6	0