
Iain M Cheeseman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential requirements for the CENP-O complex reveal parallel PLK1 kinetochore recruitment pathways. Molecular Biology of the Cell, 2021, 32, 712-721.	2.1	16
2	Permitted and restricted steps of human kinetochore assembly in mitotic cell extracts. Molecular Biology of the Cell, 2021, 32, 1241-1255.	2.1	4
3	Selective dephosphorylation by PP2A-B55 directs the meiosis I-meiosis II transition in oocytes. ELife, 2021, 10, .	6.0	13
4	Separase cleaves the kinetochore protein Meikin at the meiosis I/II transition. Developmental Cell, 2021, 56, 2192-2206.e8.	7.0	20
5	Kinetochore assembly throughout the cell cycle. Seminars in Cell and Developmental Biology, 2021, 117, 62-74.	5.0	38
6	Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes. Current Biology, 2021, 31, 5633-5641.e4.	3.9	8
7	Cellular Mechanisms and Regulation of Quiescence. Developmental Cell, 2020, 55, 259-271.	7.0	120
8	Cohesin Removal Reprograms Gene Expression upon Mitotic Entry. Molecular Cell, 2020, 78, 127-140.e7.	9.7	36
9	Chromosome Segregation: Evolving a Plastic Chromosome–Microtubule Interface. Current Biology, 2020, 30, R174-R177.	3.9	5
10	Alpha-satellite RNA transcripts are repressed by centromere–nucleolus associations. ELife, 2020, 9, .	6.0	53
11	Quiescent Cells Actively Replenish CENP-A Nucleosomes to Maintain Centromere Identity and Proliferative Potential. Developmental Cell, 2019, 51, 35-48.e7.	7.0	61
12	The AAA + ATPase TorsinA polymerizes into hollow helical tubes with 8.5 subunits per turn. Nature Communications, 2019, 10, 3262.	12.8	22
13	Ectopic Activation of the Spindle Assembly Checkpoint Signaling Cascade Reveals Its Biochemical Design. Current Biology, 2019, 29, 104-119.e10.	3.9	23
14	Dynamic regulation of dynein localization revealed by small molecule inhibitors of ubiquitination enzymes. Open Biology, 2018, 8, .	3.6	7
15	Microcephaly Modeling of Kinetochore Mutation Reveals a Brain-Specific Phenotype. Cell Reports, 2018, 25, 368-382.e5.	6.4	34
16	Distinct Roles of RZZ and Bub1-KNL1 in Mitotic Checkpoint Signaling and Kinetochore Expansion. Current Biology, 2018, 28, 3422-3429.e5.	3.9	97
17	Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Molecular Biology of the Cell, 2018, 29, 2336-2345.	2.1	16
18	The kinetochore–microtubule interface at a glance. Journal of Cell Science, 2018, 131, .	2.0	86

#	Article	IF	CITATIONS
19	CRISPR/Cas9-based gene targeting using synthetic guide RNAs enables robust cell biological analyses. Molecular Biology of the Cell, 2018, 29, 2370-2377.	2.1	14
20	Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. Developmental Cell, 2017, 40, 405-420.e2.	7.0	175
21	Centromeres are maintained by fastening CENP-A to DNA and directing an arginine anchor-dependent nucleosome transition. Nature Communications, 2017, 8, 15775.	12.8	75
22	Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin-Interacting Surfaces. Current Biology, 2017, 27, 3666-3675.e6.	3.9	28
23	Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. ELife, 2017, 6, .	6.0	41
24	Structural comparison of the <i>Caenorhabditis elegans</i> and human Ndc80 complexes bound to microtubules reveals distinct binding behavior. Molecular Biology of the Cell, 2016, 27, 1197-1203.	2.1	24
25	A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends. Journal of Cell Biology, 2016, 213, 315-328.	5.2	34
26	The molecular basis for centromere identity and function. Nature Reviews Molecular Cell Biology, 2016, 17, 16-29.	37.0	474
27	The CENP-L-N Complex Forms a Critical Node in an Integrated Meshwork of Interactions at the Centromere-Kinetochore Interface. Molecular Cell, 2015, 60, 886-898.	9.7	146
28	The outer kinetochore protein KNL-1 contains a defined oligomerization domain in nematodes. Molecular Biology of the Cell, 2015, 26, 229-237.	2.1	11
29	Chromosome Segregation: A Spatial Code to Correct Kinetochore–Microtubule Attachments. Current Biology, 2015, 25, R601-R603.	3.9	4
30	Inferring transient particle transport dynamics in live cells. Nature Methods, 2015, 12, 838-840.	19.0	143
31	Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T. Current Biology, 2015, 25, 671-677.	3.9	119
32	The Kinetochore. Cold Spring Harbor Perspectives in Biology, 2014, 6, a015826-a015826.	5.5	275
33	Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Molecular Biology of the Cell, 2014, 25, 1983-1994.	2.1	44
34	Polo-like Kinase 1 Licenses CENP-A Deposition at Centromeres. Cell, 2014, 158, 397-411.	28.9	136
35	Resonance assignments of the microtubule-binding domain of the C. elegans spindle and kinetochore-associated protein 1. Biomolecular NMR Assignments, 2014, 8, 275-278.	0.8	5
36	Cortical Dynein and Asymmetric Membrane Elongation Coordinately Position the Spindle in Anaphase. Cell, 2013, 154, 391-402.	28.9	233

#	Article	IF	CITATIONS
37	Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis. Chromosome Research, 2013, 21, 407-418.	2.2	62
38	Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Research, 2013, 21, 101-106.	2.2	37
39	The functions and consequences of force at kinetochores. Journal of Cell Biology, 2013, 200, 557-565.	5.2	44
40	CENP-T provides a structural platform for outer kinetochore assembly. EMBO Journal, 2013, 32, 424-436.	7.8	181
41	CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state. Journal of Cell Biology, 2013, 201, 23-32.	5.2	84
42	Spindle assembly checkpoint robustness requires Tpr-mediated regulation of Mad1/Mad2 proteostasis. Journal of Cell Biology, 2013, 203, 883-893.	5.2	63
43	LAB-1 Targets PP1 and Restricts Aurora B Kinase upon Entrance into Meiosis to Promote Sister Chromatid Cohesion. PLoS Biology, 2012, 10, e1001378.	5.6	51
44	CSAP localizes to polyglutamylated microtubules and promotes proper cilia function and zebrafish development. Molecular Biology of the Cell, 2012, 23, 2122-2130.	2.1	31
45	The microtubule-binding protein Cep170 promotes the targeting of the kinesin-13 depolymerase Kif2b to the mitotic spindle. Molecular Biology of the Cell, 2012, 23, 4786-4795.	2.1	53
46	Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position andÂorientation. Nature Cell Biology, 2012, 14, 311-317.	10.3	304
47	Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore–microtubule attachments. Journal of Cell Biology, 2012, 199, 285-301.	5.2	80
48	Targeted proteomic dissection of <i>Toxoplasma</i> cytoskeleton sub ompartments using MORN1. Cytoskeleton, 2012, 69, 1069-1085.	2.0	49
49	CENP-T-W-S-X Forms a Unique Centromeric Chromatin Structure with a Histone-like Fold. Cell, 2012, 148, 487-501.	28.9	229
50	T time for point centromeres. Nature Cell Biology, 2012, 14, 559-561.	10.3	3
51	Kinetochore Structure: Pulling Answers from Yeast. Current Biology, 2012, 22, R842-R844.	3.9	0
52	The Kinetochore-Bound Ska1 Complex Tracks Depolymerizing Microtubules and Binds to Curved Protofilaments. Developmental Cell, 2012, 23, 968-980.	7.0	194
53	Induced Ectopic Kinetochore Assembly Bypasses the Requirement for CENP-A Nucleosomes. Cell, 2011, 145, 410-422.	28.9	307
54	Affinity Purification of Protein Complexes in C. elegans. Methods in Cell Biology, 2011, 106, 289-322.	1.1	40

4

#	Article	IF	CITATIONS
55	Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends in Cell Biology, 2011, 21, 133-140.	7.9	336
56	Chromosome Segregation: Keeping Kinetochores in the Loop. Current Biology, 2011, 21, R110-R112.	3.9	6
57	Kinetochore assembly: if you build it, they will come. Current Opinion in Cell Biology, 2011, 23, 102-108.	5.4	64
58	Tension at EMBO's Aneuploidy Workshop. EMBO Reports, 2010, 11, 727-729.	4.5	0
59	Aurora B kinase controls the targeting of the Astrin–SKAP complex to bioriented kinetochores. Journal of Cell Biology, 2010, 191, 269-280.	5.2	113
60	Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. Journal of Cell Biology, 2010, 188, 809-820.	5.2	332
61	Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Research, 2010, 20, 1133-1142.	5.5	280
62	Aurora B Phosphorylates Spatially Distinct Targets to Differentially Regulate the Kinetochore-Microtubule Interface. Molecular Cell, 2010, 38, 383-392.	9.7	430
63	The Zn Finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis. Developmental Biology, 2010, 337, 148-156.	2.0	87
64	The CENP-S complex is essential for the stable assembly of outer kinetochore structure. Journal of Cell Biology, 2009, 186, 173-182.	5.2	132
65	The Human Kinetochore Ska1 Complex Facilitates Microtubule Depolymerization-Coupled Motility. Developmental Cell, 2009, 16, 374-385.	7.0	247
66	Molecular architecture of the kinetochore–microtubule interface. Nature Reviews Molecular Cell Biology, 2008, 9, 33-46.	37.0	798
67	Fibrils Connect Microtubule Tips with Kinetochores: A Mechanism to Couple Tubulin Dynamics to Chromosome Motion. Cell, 2008, 135, 322-333.	28.9	186
68	CCAN Makes Multiple Contacts with Centromeric DNA to Provide Distinct Pathways to the Outer Kinetochore. Cell, 2008, 135, 1039-1052.	28.9	352
69	Toward a Molecular Structure of the Eukaryotic Kinetochore. Developmental Cell, 2008, 15, 645-655.	7.0	51
70	KNL1 and the CENP-H/I/K Complex Coordinately Direct Kinetochore Assembly in Vertebrates. Molecular Biology of the Cell, 2008, 19, 587-594.	2.1	176
71	A new mechanism controlling kinetochore–microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes and Development, 2008, 22, 2385-2399.	5.9	156
72	Orientation and structure of the Ndc80 complex on the microtubule lattice. Journal of Cell Biology, 2008, 182, 1055-1061.	5.2	86

#	Article	IF	CITATIONS
73	The Conserved KMN Network Constitutes the Core Microtubule-Binding Site of the Kinetochore. Cell, 2006, 127, 983-997.	28.9	887
74	The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biology, 2006, 8, 446-457.	10.3	437
75	The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. Journal of Cell Biology, 2006, 173, 9-17.	5.2	173
76	The CENP-F-like Proteins HCP-1 and HCP-2 Target CLASP to Kinetochores to Mediate Chromosome Segregation. Current Biology, 2005, 15, 771-777.	3.9	90
77	A Combined Approach for the Localization and Tandem Affinity Purification of Protein Complexes from Metazoans. Science Signaling, 2005, 2005, pl1-pl1.	3.6	217
78	A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes and Development, 2004, 18, 2255-2268.	5.9	370
79	Feeling tense enough?. Nature, 2004, 428, 32-33.	27.8	7
80	Cell division: AAAtacking the mitotic spindle. Current Biology, 2004, 14, R70-R72.	3.9	26
81	"Holo"er than thou: Chromosome segregation and kinetochore function in C. elegans. Chromosome Research, 2004, 12, 641-653.	2.2	147
82	Kinetochore Protein Interactions and their Regulation by the Aurora Kinase Ipl1p. Molecular Biology of the Cell, 2003, 14, 3342-3355.	2.1	106
83	Architecture of the budding yeast kinetochore reveals a conserved molecular core. Journal of Cell Biology, 2003, 163, 215-222.	5.2	196
84	Simple centromere, complex kinetochore. Journal of Cell Biology, 2002, 157, 199-203.	5.2	131
85	Phospho-Regulation of Kinetochore-Microtubule Attachments by the Aurora Kinase Ipl1p. Cell, 2002, 111, 163-172.	28.9	575
86	Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)–related protein Sli15 during chromosome segregation. Journal of Cell Biology, 2001, 155, 763-774.	5.2	155
87	Dad1p, Third Component of the Duo1p/Dam1p Complex Involved in Kinetochore Function and Mitotic Spindle Integrity. Molecular Biology of the Cell, 2001, 12, 2601-2613.	2.1	60
88	Mitotic Spindle Integrity and Kinetochore Function Linked by the Duo1p/Dam1p Complex. Journal of Cell Biology, 2001, 152, 197-212.	5.2	139
89	Implication of a novel multiprotein Dam1p complex in outer kinetochore function. Journal of Cell Biology, 2001, 155, 1137-1146.	5.2	167
90	A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Molecular Biology, 1999, 39, 1189-1196.	3.9	237

#	Article	IF	CITATIONS
91	Timekeeping in the honey bee colony: integration of circadian rhythms and division of labor. Behavioral Ecology and Sociobiology, 1998, 43, 147-160.	1.4	120
92	Saccharomyces cerevisiae Duo1p and Dam1p, Novel Proteins Involved in Mitotic Spindle Function. Journal of Cell Biology, 1998, 143, 1029-1040.	5.2	90
93	A highly specialized social grooming honey bee (Hymenoptera: Apidae). Journal of Insect Behavior, 1995, 8, 855-861.	0.7	21