
Miklos Csala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ascorbate Metabolism and Its Regulation in Animals. Free Radical Biology and Medicine, 1997, 23, 793-803.	1.3	209
2	On the role of 4-hydroxynonenal in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 826-838.	1.8	189
3	Lipotoxicity in the liver. World Journal of Hepatology, 2013, 5, 550.	0.8	145
4	Endoplasmic reticulum: nutrient sensor in physiology and pathology. Trends in Endocrinology and Metabolism, 2009, 20, 194-201.	3.1	95
5	Endoplasmic reticulum: A metabolic compartment. FEBS Letters, 2006, 580, 2160-2165.	1.3	94
6	Metformin Attenuates Palmitate-Induced Endoplasmic Reticulum Stress, Serine Phosphorylation of IRS-1 and Apoptosis in Rat Insulinoma Cells. PLoS ONE, 2014, 9, e97868.	1.1	82
7	Redox Control of Endoplasmic Reticulum Function. Antioxidants and Redox Signaling, 2010, 13, 77-108.	2.5	75
8	Uncoupled Redox Systems in the Lumen of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2006, 281, 4671-4677.	1.6	73
9	Epigallocatechin-3-Gallate (EGCG) Promotes Autophagy-Dependent Survival via Influencing the Balance of mTOR-AMPK Pathways upon Endoplasmic Reticulum Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	1.9	70
10	Role of ascorbate in oxidative protein folding. BioFactors, 2003, 17, 37-46.	2.6	59
11	Minireview: Endoplasmic Reticulum Stress: Control in Protein, Lipid, and Signal Homeostasis. Molecular Endocrinology, 2013, 27, 384-393.	3.7	52
12	Protein-disulfide Isomerase- and Protein Thiol-dependent Dehydroascorbate Reduction and Ascorbate Accumulation in the Lumen of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2001, 276, 8825-8828.	1.6	50
13	Stress on redox. FEBS Letters, 2007, 581, 3634-3640.	1.3	47
14	Green tea flavonols inhibit glucosidase II. Biochemical Pharmacology, 2006, 72, 640-646.	2.0	44
15	Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum. Biological Chemistry, 2010, 391, 1-8.	1.2	44
16	Transport and transporters in the endoplasmic reticulum. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1325-1341.	1.4	43
17	Redoxâ€based endoplasmic reticulum dysfunction in neurological diseases. Journal of Neurochemistry, 2008, 107, 20-34.	2.1	42
18	The Endoplasmic Reticulum As the Extracellular Space Inside the Cell: Role in Protein Folding and Glycosylation. Antioxidants and Redox Signaling, 2012, 16, 1100-1108.	2.5	40

#	Article	IF	CITATIONS
19	Ascorbate synthesis-dependent glutathione consumption in mouse liver. FEBS Letters, 1996, 381, 39-41.	1.3	37
20	Hexose-6-phosphate dehydrogenase: linking endocrinology and metabolism in the endoplasmic reticulum. Journal of Molecular Endocrinology, 2009, 42, 283-289.	1.1	36
21	Evidence for an UDP-glucuronic acid/phenol glucuronide antiport in rat liver microsomal vesicles. Biochemical Journal, 1996, 315, 171-176.	1.7	35
22	Cooperativity between 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase is based on a common pyridine nucleotide pool in the lumen of the endoplasmic reticulum. Molecular and Cellular Endocrinology, 2006, 248, 24-25.	1.6	34
23	Ascorbate-mediated electron transfer in protein thiol oxidation in the endoplasmic reticulum. FEBS Letters, 1999, 460, 539-543.	1.3	33
24	Evidence for multiple glucuronide transporters in rat liver microsomes. Biochemical Pharmacology, 2004, 68, 1353-1362.	2.0	33
25	Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes. FEBS Letters, 1998, 430, 293-296.	1.3	32
26	Ascorbyl free radical and dehydroascorbate formation in rat liver endoplasmic reticulum. Journal of Bioenergetics and Biomembranes, 2002, 34, 317-323.	1.0	32
27	Glutathione depletion induces glycogenolysis dependent ascorbate synthesis in isolated murine hepatocytes. FEBS Letters, 1996, 388, 173-176.	1.3	31
28	Contribution of Fructose-6-Phosphate to Glucocorticoid Activation in the Endoplasmic Reticulum: Possible Implication in the Metabolic Syndrome. Endocrinology, 2010, 151, 4830-4839.	1.4	31
29	Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles. Biochemical Journal, 2000, 349, 413-415.	1.7	29
30	Scurvy Leads to Endoplasmic Reticulum Stress and Apoptosis in the Liver of Guinea Pigs. Journal of Nutrition, 2005, 135, 2530-2534.	1.3	29
31	Translocon pores in the endoplasmic reticulum are permeable to small anions. American Journal of Physiology - Cell Physiology, 2006, 291, 511-517.	2.1	28
32	Role of Vitamin E in Ascorbate-Dependent Protein Thiol Oxidation in Rat Liver Endoplasmic Reticulum. Archives of Biochemistry and Biophysics, 2001, 388, 55-59.	1.4	27
33	Endoplasmic reticulum stress underlying the pro-apoptotic effect of epigallocatechin gallate in mouse hepatoma cells. International Journal of Biochemistry and Cell Biology, 2009, 41, 694-700.	1.2	27
34	Evidence for the transport of glutathione through ryanodine receptor channel type 1. Biochemical Journal, 2003, 376, 807-812.	1.7	26
35	Metyrapone prevents cortisone-induced preadipocyte differentiation by depleting luminal NADPH of the endoplasmic reticulum. Biochemical Pharmacology, 2008, 76, 382-390.	2.0	23
36	Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radical Biology and Medicine, 2015, 83, 331-340.	1.3	23

#	Article	IF	CITATIONS
37	The translocon and the non-specific transport of small molecules in the endoplasmic reticulum (Review). Molecular Membrane Biology, 2008, 25, 95-101.	2.0	22
38	Fatty acyl-CoA esters and the permeability of rat liver microsomal vesicles. Biochemical Journal, 1996, 320, 343-344.	1.7	21
39	Crosstalk and Barriers Between the Electron Carriers of the Endoplasmic Reticulum. Antioxidants and Redox Signaling, 2012, 16, 772-780.	2.5	21
40	Glucuronide transport across the endoplasmic reticulum membrane is inhibited by epigallocatechin gallate and other green tea polyphenols. International Journal of Biochemistry and Cell Biology, 2007, 39, 922-930.	1.2	20
41	G6PT-H6PDH-11βHSD1 triad in the liver and its implication in the pathomechanism of the metabolic syndrome. World Journal of Hepatology, 2012, 4, 129.	0.8	20
42	Enhancement of Interleukin-6 Production by Fibrinogen Degradation Product D in Human Peripheral Monocytes and Perfused Murine Liver. Scandinavian Journal of Immunology, 1995, 42, 175-178.	1.3	19
43	Ascorbate as a Substrate for Glycolysis or Gluconeogenesis. Free Radical Biology and Medicine, 1997, 23, 804-808.	1.3	18
44	β-glucuronidase latency in isolated murine hepatocytes. Biochemical Pharmacology, 2000, 59, 801-805.	2.0	18
45	Regulation of Glucuronidation by Glutathione Redox State through the Alteration of UDP-Glucose Supply Originating from Glycogen Metabolism. Archives of Biochemistry and Biophysics, 1997, 348, 169-173.	1.4	17
46	Cellular toxicity of dietary trans fatty acids and its correlation with ceramide and diglyceride accumulation. Food and Chemical Toxicology, 2019, 124, 324-335.	1.8	17
47	Gluconeogenesis from ascorbic acid: ascorbate recycling in isolated murine hepatocytes. FEBS Letters, 1996, 390, 183-186.	1.3	16
48	Prostaglandin-Independent Stimulation of Interleukin-6 Production by Fibrinogen Degradation Product D in Perfused Murine Liver. Scandinavian Journal of Immunology, 1998, 48, 269-271.	1.3	16
49	Inhibition of hepatic glucose 6-phosphatase system by the green tea flavanol epigallocatechin gallate. FEBS Letters, 2007, 581, 1693-1698.	1.3	16
50	Ryanodine Receptor Channel-Dependent Glutathione Transport in the Sarcoplasmic Reticulum of Skeletal Muscle. Biochemical and Biophysical Research Communications, 2001, 287, 696-700.	1.0	14
51	Glutathione transport in the endo/sarcoplasmic reticulum. BioFactors, 2003, 17, 27-35.	2.6	14
52	Intraluminal hydrogen peroxide induces a permeability change of the endoplasmic reticulum membrane. FEBS Letters, 2008, 582, 4131-4136.	1.3	14
53	Induction and peroxisomal appearance of gulonolactone oxidase upon clofibrate treatment in mouse liver. FEBS Letters, 1999, 458, 359-362.	1.3	13
54	Constant expression of hexose-6-phosphate dehydrogenase during differentiation of human adipose-derived mesenchymal stem cells. Journal of Molecular Endocrinology, 2008, 41, 125-133.	1.1	13

#	Article	IF	CITATIONS
55	Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles. Biochemical Journal, 2000, 349, 413.	1.7	10
56	Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding. International Journal of Molecular Sciences, 2009, 10, 1346-1359.	1.8	10
57	Decreased prereceptorial glucocorticoid activating capacity in starvation due to an oxidative shift of pyridine nucleotides in the endoplasmic reticulum. FEBS Letters, 2010, 584, 4703-4708.	1.3	9
58	Novel compounds reducing IRS-1 serine phosphorylation for treatment of diabetes. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 424-428.	1.0	9
59	Inhibition of glucuronidation by an acyl-CoA-mediated indirect mechanism. Biochemical Pharmacology, 1996, 52, 1127-1131.	2.0	8
60	Natural mutations lead to enhanced proteasomal degradation of human Ncb5or, a novel flavoheme reductase. Biochimie, 2013, 95, 1403-1410.	1.3	8
61	Microsomal preâ€receptor cortisol production is inhibited by resveratrol and epigallocatechin gallate through different mechanisms. BioFactors, 2019, 45, 236-243.	2.6	8
62	Effect of cis- and trans-Monounsaturated Fatty Acids on Palmitate Toxicity and on Palmitate-induced Accumulation of Ceramides and Diglycerides. International Journal of Molecular Sciences, 2020, 21, 2626.	1.8	8
63	Molecular Mechanisms Underlying the Elevated Expression of a Potentially Type 2 Diabetes Mellitus Associated SCD1 Variant. International Journal of Molecular Sciences, 2022, 23, 6221.	1.8	8
64	Different induction of gulonolactone oxidase in aromatic hydrocarbon-responsive or -unresponsive mouse strains. FEBS Letters, 1999, 463, 345-349.	1.3	7
65	Application of high-performance liquid chromatography–electrospray ionization–mass spectrometry to measure microsomal membrane transport of glucuronides. Analytical Biochemistry, 2005, 342, 45-52.	1.1	7
66	Inhibition of microsomal cortisol production by (–)â€epigallocatechinâ€3â€gallate through a redox shift in the endoplasmic reticulum—A potential new target for treating obesityâ€related diseases. BioFactors, 2013, 39, 534-541.	2.6	7
67	The Potential Impact of Connexin 43 Expression on Bcl-2 Protein Level and Taxane Sensitivity in Head and Neck Cancers–In Vitro Studies. Cancers, 2019, 11, 1848.	1.7	7
68	Characterization of sulfate transport in the hepatic endoplasmic reticulum. Archives of Biochemistry and Biophysics, 2005, 440, 173-180.	1.4	6
69	Expression of hexose-6-phosphate dehydrogenase in rat tissues. Journal of Steroid Biochemistry and Molecular Biology, 2011, 126, 57-64.	1.2	6
70	BGP-15 Protects Mitochondria in Acute, Acetaminophen Overdose Induced Liver Injury. Pathology and Oncology Research, 2020, 26, 1797-1803.	0.9	6
71	Novel Crizotinib–GnRH conjugates revealed the significance of lysosomal trapping in GnRH-based drug delivery systems. International Journal of Molecular Sciences, 2019, 20, 5590.	1.8	5
72	Ascorbate and Environmental Stressa. Annals of the New York Academy of Sciences, 1998, 851, 292-303.	1.8	4

#	Article	IF	CITATIONS
73	Inhibition of glycoprotein synthesis in the endoplasmic reticulum as a novel anticancer mechanism of (â^')â€epigallocatechinâ€3â€gallate. BioFactors, 2011, 37, 468-476.	2.6	4
74	Luminal accumulation of newly synthesized morphineâ€3â€glucuronide in rat liver microsomal vesicles. BioFactors, 2013, 39, 271-278.	2.6	4
75	Analytical Approaches for the Quantitation of Redox-active Pyridine Dinucleotides in Biological Matrices. Periodica Polytechnica: Chemical Engineering, 2016, 60, 218-230.	0.5	4
76	Different Metabolism and Toxicity of TRANS Fatty Acids, Elaidate and Vaccenate Compared to Cis-Oleate in HepG2 Cells. International Journal of Molecular Sciences, 2022, 23, 7298.	1.8	4
77	Cytosolic localization of <scp>NADH</scp> cytochrome <i>b</i> ₅ oxidoreductase (Ncb5or). FEBS Letters, 2016, 590, 661-671.	1.3	3
78	Investigation of the putative rateâ€limiting role of electron transfer in fatty acid desaturation using transfected HEK293T cells. FEBS Letters, 2020, 594, 530-539.	1.3	3
79	Synthesis and Antiproliferative Activity of Novel Imipridone–Ferrocene Hybrids with Triazole and Alkyne Linkers. Pharmaceuticals, 2022, 15, 468.	1.7	2
80	Ethanol-dependent induction of bilirubin UDP-glucuronosyl-transferase in rat liver is mediated by Kupffer cells. Life Sciences, 2002, 70, 1205-1212.	2.0	1
81	Expression of hexose-6-phosphate dehydrogenase in rat tissues. Clinical Biochemistry, 2011, 44, S10.	0.8	1
82	Simultaneous Quantitative Determination of Different Ceramide and Diacylglycerol Species in Cultured Cells by Using Liquid Chromatography–Electrospray Tandem MassÂSpectrometry. Periodica Polytechnica: Chemical Engineering, 2020, 64, 421-429.	0.5	1