Viktor

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4229266/publications.pdf
Version: 2024-02-01

Unconventional Trajectories of Meteoroids in the Earthâ $€^{T M}$ s Atmosphere. Smart Innovation, Systems and
Technologies, 2022, , 179-193.

Aspects of Meteoroids Flight in the Earthâ€ ${ }^{T M}$ s Atmosphere. Smart Innovation, Systems and Technologies, 2021, , 13-23.

Modeling the Mechanisms of the Destruction of the Surface Layer of a Meteoroid under the Influence of a Thermal Factor. Mathematical Models and Computer Simulations, 2021, 13, 698-704.

The Study of the Physical Processes that Cause the Destruction and Fragmentation of Meteoroids in the Atmosphere. Smart Innovation, Systems and Technologies, 2021, , 199-212.

A Mechanism for the Formation of the Surface Relief of Falling Meteor Bodies. High Temperature, 2020, 58, 132-136.

Mathematical Simulation of the Fall and Fragmentation of the Sikhote-Alin Bolide. Mathematical Models and Computer Simulations, 2019, 11, 451-456.

Effects of bolide parameters on the motion and destruction in the Earthâ $€^{T M}{ }^{s}$ atmosphere. IOP
$7 \quad$ Conference Series: Materials Science and Engineering, 2018, 468, 012025.
0.6

0

8 Comprehensive Mathematical Analysis of Fall of Bolides in Atmosphere with Final Multiple Explosion.
Computational Mathematics and Mathematical Physics, 2018, 58, 1294-1308.

9 Simulation of the motion and destruction of bolides in the Earthâ $€^{\mathrm{TM}} \mathrm{s}$ atmosphere. High Temperature,
2016, 54, 308-315.

Numerical investigation of interactions of multiple spherical shock waves between themselves and
10 Numerical investigation of interactions of multiple spherical shock waves between themselves and \quad with the underlying surface. Computational Mathematics and Mathematical Physics, 2016, 56, 1096-1101.
0.8

2

> 11 Destruction mechanisms of meteoroids and heat transfer to their surfaces. Mathematical Models and Computer Simulations, 2016, 8, 506-512.
0.5

Numerical solution of the problem of explosion in planetary atmospheres in the Lagrangian variables.
Fluid Dynamics, 2013, 48, 416-423.
0.9
0.8

1
.0
14

5

Numerical solution of the problem of the theory of point explosion in Lagrangian coordinates. Some new results. Mathematical Models and Computer Simulations, 2012, 4, 210-218.

An estimate of the heat fluxes to the surface of blunt bodies moving at hypersonic velocity in the atmosphere. Prikladnaya Matematika I Mekhanika, 2007, 71, 747-754.
$0.4 \quad 8$

Investigation of the behaviour of a column beyond the elastic limit by methods of the technical
theory of stability. Prikladnaya Matematika I Mekhanika, 2006, 70, 84-90.
0.40

Problems of evaluation of heat fluxes for blunt bodies moving in a planetary atmosphere. Doklady
Physics, 2006, 51, 564-568.
0.7

0

17 Laws of ascent of two volumes of hot gas. Fluid Dynamics, 1996, 31, 375-377.
19 Pair explosion in an exponential atmosphere. Journal of Engineering Physics and Thermophysics, 1994,
$66,584-587$.

Possibility of inverse Mach reflection in association with a laser spark explosion over a plane surface. Fluid Dynamics, 1994, 28, 848-851.

Air streams in the atmosphere induced by multiple near-surface heat sources. Fluid Dynamics, 1994, 28,
608-612.

Circulating and jet flows formed in the atmosphere during the rise of two large-scale thermals.
Journal of Applied Mechanics and Technical Physics, 1993, 34, 72-79.

Double explosion above a heated surface. Journal of Engineering Physics and Thermophysics, 1992, 62, 346-352.

Interaction dynamics of two coaxial vortex rings in the presence of natural convection. Fluid Dynamics, 1992, 26, 615-618.

Head-on collision of two spherical shock waves. Interaction of laser sparks in a gas. Fluid Dynamics, 1991, 25, 761-765.

Numerical investigation of the spatial interaction of two large-scale thermals. Fluid Dynamics, 1991, 25, 538-544.

Self-ignition mechanism for coal. Combustion, Explosion and Shock Waves, 1990, 26, 147-152.
0.8

Interaction of spherical shock waves with near-surface thermal gas inhomogeneities. Combustion, Explosion and Shock Waves, 1990, 26, 321-325.

Cumulation and spallation with local thermal shocks in metals disks. Journal of Engineering Physics,
1990, 58, 75-81.
0.0

Spherical shock wave reflection from a surface with a heated gas layer. Fluid Dynamics, 1990, 24, 607-613.

31 Numerical modeling of the ascent of surface thermals. Fluid Dynamics, 1989, 24, 271-277.
0.9

0

32 Passage of spherical shock waves through thermals. Journal of Engineering Physics, 1989, 57, 938-942.
0.0

Interaction between a plane shock wave and a spherical volume of hot gas. Fluid Dynamics, 1988, 23, 78-82.

A numerical technique for solving non-stationary spatial problems of the dynamics of elastoplastic media. USSR Computational Mathematics and Mathematical Physics, 1988, 28, 75-80.

Numerical solutions of problems in wave dynamics using an ES-1055 M matrix processor. USSR
Computational Mathematics and Mathematical Physics, 1987, 27, 160-166.
0.0

0

