Daniel J Eyckens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4229095/publications.pdf

Version: 2024-02-01

471371 526166 36 804 17 27 citations h-index g-index papers 36 36 36 678 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Review of Solvate Ionic Liquids: Physical Parameters and Synthetic Applications. Frontiers in Chemistry, 2019, 7, 263.	1.8	74
2	Designing carbon fiber composite interfaces using a †graft-to' approach: Surface grafting density versus interphase penetration. Carbon, 2019, 146, 88-96.	5.4	56
3	An efficient high-throughput grafting procedure for enhancing carbon fiber-to-matrix interactions in composites. Chemical Engineering Journal, 2018, 353, 373-380.	6.6	50
4	Synergistic interfacial effects of ionic liquids as sizing agents and surface modified carbon fibers. Journal of Materials Chemistry A, 2018, 6, 4504-4514.	5.2	48
5	Fiber with Butterfly Wings: Creating Colored Carbon Fibers with Increased Strength, Adhesion, and Reversible Malleability. ACS Applied Materials & Interfaces, 2019, 11, 41617-41625.	4.0	43
6	Simultaneously increasing the hydrophobicity and interfacial adhesion of carbon fibres: a simple pathway to install passive functionality into composites. Journal of Materials Chemistry A, 2019, 7, 13483-13494.	5.2	43
7	Using molecular entanglement as a strategy to enhance carbon fiber-epoxy composite interfaces. Composites Science and Technology, 2020, 196, 108225.	3.8	39
8	Covalent sizing surface modification as a route to improved interfacial adhesion in carbon fibre-epoxy composites. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106147.	3.8	36
9	Enhancing interfacial shear strength via surface grafting of carbon fibers using the Kolbe decarboxylation reaction. Composites Science and Technology, 2018, 159, 135-141.	3.8	35
10	Determination of Kamlet–Taft parameters for selected solvate ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 13153-13157.	1.3	34
11	Improving the effects of plasma polymerization on carbon fiber using a surface modification pretreatment. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106319.	3.8	31
12	Synthesis of α-aminophosphonates using solvate ionic liquids. RSC Advances, 2017, 7, 27900-27904.	1.7	29
13	Modification of Carbon Fibre Surfaces by Sulfurâ€Fluoride Exchange Click Chemistry. ChemPhysChem, 2018, 19, 3176-3181.	1.0	28
14	Examining interfacial interactions in a range of polymers using poly(ethylene oxide) functionalized carbon fibers. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106053.	3.8	28
15	Solvate Ionic Liquids as Reaction Media for Electrocyclic Transformations. European Journal of Organic Chemistry, 2016, 2016, 913-917.	1.2	27
16	Carbon fibre surface chemistry and its role in fibre-to-matrix adhesion. Journal of Materials Chemistry A, 2021, 9, 26528-26572.	5. 2	27
17	Colour tuning and enhancement of gel-based electrochemiluminescence devices utilising Ru(ii) and Ir(iii) complexes. Chemical Communications, 2019, 55, 11474-11477.	2.2	20
18	Expanding the Scope of Surface Grafted Polymers Using Electroinitiated Polymerization. Langmuir, 2020, 36, 7217-7226.	1.6	20

#	Article	IF	CITATIONS
19	Rapid Cross-Linking of Epoxy Thermosets Induced by Solvate Ionic Liquids. ACS Applied Polymer Materials, 2020, 2, 2651-2657.	2.0	19
20	Using redox active molecules to build multilayered architecture on carbon fibers and the effect on adhesion in epoxy composites. Composites Science and Technology, 2021, 202, 108564.	3.8	13
21	A study on acute toxicity and solvent capacity of solvate ionic liquids in vivo using a zebrafish model (Danio rerio). New Journal of Chemistry, 2016, 40, 6599-6603.	1.4	11
22	Carbon fiber sizing agents based on renewable terpenes. Composites Science and Technology, 2022, 220, 109280.	3.8	10
23	αâ€Aminophosphonates as Potential PARP1 Inhibitors. ChemistrySelect, 2020, 5, 4205-4209.	0.7	9
24	Improved out-of-plane strength and weight reduction using hybrid interface composites. Composites Science and Technology, 2019, 182, 107730.	3.8	8
25	Copper Ionophores as Novel Antiobesity Therapeutics. Molecules, 2020, 25, 4957.	1.7	8
26	Ion-Tagged Prolinamide Organocatalysts for the Direct Aldol Reaction On-Water. Catalysis Letters, 2016, 146, 212-219.	1.4	7
27	Using In Situ Polymerization to Increase Puncture Resistance and Induce Reversible Formability in Silk Membranes. Materials, 2020, 13, 2252.	1.3	7
28	Multifunctional polymeric surface coatings of carbon fibre electrodes for enhanced energy storage performance. Chemical Engineering Journal, 2022, 447, 137560.	6.6	7
29	Effect of Tow Size and Interface Interaction on Interfacial Shear Strength Determined by Iosipescu (V-Notch) Testing in Epoxy Resin. Materials, 2018, 11, 1786.	1.3	6
30	Surface modification of carbon fiber as a protective strategy against thermal degradation. Composites Part A: Applied Science and Manufacturing, 2022, 153, 106740.	3.8	6
31	Mixed Surface Chemistry on Carbon Fibers to Promote Adhesion in Epoxy and PMMA Polymers. Industrial & Description of Carbon Fibers to Promote Adhesion in Epoxy and PMMA Polymers.	1.8	5
32	Examining the Role of Aryldiazonium Salts in Surface Electroinitiated Polymerization. Langmuir, 2022, 38, 4979-4995.	1.6	5
33	Comparison of solvate ionic liquids and DMSO as an in vivo delivery and storage media for small molecular therapeutics. BMC Biotechnology, 2018, 18, 32.	1.7	4
34	α-Aminophosphonate Derivatives for Enhanced Flame Retardant Properties in Epoxy Resin. Materials, 2021, 14, 3230.	1.3	4
35	Sizeâ€Controlled Nanosculpture of Cylindrical Pores across Multilayer Graphene via Photocatalytic Perforation. Advanced Materials Interfaces, 2022, 9, .	1.9	4
36	Phosphorus-Based α-Amino Acid Mimetic for Enhanced Flame-Retardant Properties in an Epoxy Resin. Australian Journal of Chemistry, 2019, 72, 226-232.	0.5	3