
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/42288/publications.pdf Version: 2024-02-01

LINC 7HOU

#	Article	IF	CITATIONS
1	Backaction Evading and Amplification of Weak Force Signal in an Optomechanical System. Annalen Der Physik, 2022, 534, .	2.4	3
2	Nonreciprocal amplification in a cavity magnonics system. Physical Review A, 2022, 105, .	2.5	13
3	The Simultaneous Groundâ€State Cooling and Synchronization of Two Mechanical Oscillators by Driving Nonlinear Medium. Annalen Der Physik, 2022, 534, .	2.4	5
4	Unidirectional amplification in optomechanical system coupling with a structured bath. Optics Express, 2022, 30, 21649.	3.4	0
5	Remote weak-signal measurement via bound states in optomechanical systems. Communications in Theoretical Physics, 2021, 73, 025102.	2.5	3
6	Nonreciprocal Amplification in Coupledâ€Rotating Cavities Around Exceptional Points. Annalen Der Physik, 2021, 533, 2000405.	2.4	2
7	Atomâ€Mediated Phonon Blockade and Controlledâ€Z Gate in Superconducting Circuit System. Annalen Der Physik, 2021, 533, 2100039.	2.4	7
8	Measurement of the mechanical reservoir spectral density in an optomechanical system. Physical Review A, 2021, 103, .	2.5	4
9	Force sensing in a dual-mode optomechanical system with linear–quadratic coupling and modulated photon hopping. Optics Letters, 2021, 46, 3075.	3.3	10
10	Strong Squeezing of Duffing Oscillator in a Highly Dissipative Optomechanical Cavity System. Annalen Der Physik, 2020, 532, 1900596.	2.4	9
11	Simultaneous blockade of a photon, phonon, and magnon induced by a two-level atom. Physical Review A, 2020, 101, .	2.5	58
12	Electromagnetically and optomechanically induced transparency and amplification in an atom-assisted cavity optomechanical system. Physical Review A, 2019, 100, .	2.5	23
13	Generating a Squeezedâ€Coherentâ€Cat State in a Doubleâ€Cavity Optomechanical System. Annalen Der Physik, 2019, 531, 1900196.	2.4	7
14	Improving the sensitivity of weak microwave signal detection with optomechanical system under non-Markovian regime. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1363.	2.1	2
15	Generation of entangled Schrödinger cat state of two macroscopic mirrors. Optics Express, 2019, 27, 13547.	3.4	21
16	Improve the sensitivity of an optomechanical sensor with the auxiliary mechanical oscillator. European Physical Journal D, 2018, 72, 1.	1.3	2
17	Optomechanical quadrature squeezing in the non-Markovian regime. Optics Letters, 2018, 43, 6053.	3.3	29
18	Improve microwave quantum illumination via optical parametric amplifier. Annals of Physics, 2017, 385, 757-768.	2.8	29

#	Article	IF	CITATIONS
19	Optomechanical force sensor in a non-Markovian regime. New Journal of Physics, 2017, 19, 083022.	2.9	40
20	The synchronization and entanglement of optomechanical systems. Journal of Modern Optics, 2017, 64, 578-582.	1.3	4
21	Single-photon multi-ports router based on the coupled cavity optomechanical system. Scientific Reports, 2016, 6, 39343.	3.3	36
22	Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers. International Journal of Theoretical Physics, 2016, 55, 3697-3705.	1.2	4
23	Optomechanical cooling in the non-Markovian regime. Physical Review A, 2016, 93, .	2.5	42
24	Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment. Scientific Reports, 2016, 6, 23678.	3.3	31
25	The Correlated Two-Photon Transport in a One-Dimensional Waveguide Coupling to a Hybrid Atom-Optomechanical System. International Journal of Theoretical Physics, 2016, 55, 4620-4630.	1.2	2
26	Bistability and Entanglement of a Two-Mode Cavity Optomechanical System. International Journal of Theoretical Physics, 2016, 55, 901-910.	1.2	2
27	Entanglement of Optical and Mechanical Modes Enhanced in Distant Optomechanical Systems by Atomic Coherence. International Journal of Theoretical Physics, 2016, 55, 329-337.	1.2	2
28	Robust fermionic-mode entanglement of a nanoelectronic system in non-Markovian environments. Physical Review A, 2015, 91, .	2.5	13
29	Controlling photon transport in the single-photon weak-coupling regime of cavity optomechanics. Physical Review A, 2015, 91, .	2.5	31
30	The nonclassical effects in coupled optomechanical array. Journal of Modern Optics, 2015, 62, 1076-1080.	1.3	1
31	Multiple Optomechanically Induced Transparency in a Ring Cavity Optomechanical System Assisted by Atomic Media. International Journal of Theoretical Physics, 2015, 54, 3665-3675.	1.2	10
32	State transfer and entanglement of two mechanical oscillators in coupled cavity optomechanical system. Journal of Modern Optics, 2014, 61, 1180-1186.	1.3	14
33	Pulse Transmission and State Conversion in Two-mode Optomechanical Cavity Coupled with Atomic Medium. International Journal of Theoretical Physics, 2014, 53, 2810-2818.	1.2	1
34	Quantum Nondemolition Measurement of Entangled Atomic Ensembles in Coupled Cavity System. International Journal of Theoretical Physics, 2014, 53, 4057-4064.	1.2	0
35	Entanglement of two movable mirrors and two-mode cavity fields generated by a single four-level atom. European Physical Journal D, 2013, 67, 1.	1.3	6
36	Simulation of Three-Spin Interaction in Coupled Cavities Chain. International Journal of Theoretical Physics, 2013, 52, 3011-3019.	1.2	0

#	Article	IF	CITATIONS
37	Electromagnetically induced transparency in cavity optomechanical system with -type atomic medium. Journal of Modern Optics, 2013, 60, 431-436.	1.3	11
38	The quadrature squeezing of a mirror in cavity optomechanics coupled with atomic media. European Physical Journal D, 2013, 67, 1.	1.3	10
39	Nonlinearity enhancement in optomechanical systems. Physical Review A, 2013, 88, .	2.5	22
40	Control of correlated two-photon transport in a one-dimensional waveguide. Physical Review A, 2012, 85, .	2.5	16
41	Electromagnetically induced transparency in a quadratically coupled optomechanical system with an atomic medium. Journal of Modern Optics, 2012, 59, 1336-1341.	1.3	9
42	Enhanced entanglement between a movable mirror and a cavity field assisted by two-level atoms. Journal of Applied Physics, 2012, 111, .	2.5	21
43	Control of Two-Photon Transport in a One-Dimensional Waveguide. International Journal of Theoretical Physics, 2012, 51, 2237-2245.	1.2	1
44	Entanglement of Two Atoms in Insulator and Superfluid States. International Journal of Theoretical Physics, 2011, 50, 2552-2559.	1.2	4
45	Scheme to generate three-mode continuous-variable entanglement in cavity quantum electrodynamics. Optics Communications, 2011, 284, 1090-1093.	2.1	0
46	The simulation of XYZ-spin chain in coupled cavities. Optics Communications, 2011, 284, 2250-2253.	2.1	1
47	Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence. Physical Review A, 2011, 83, .	2.5	92
48	Frequency conversion and entanglement in V configuration atomic ensemble. Optics Communications, 2010, 283, 265-269.	2.1	3
49	Perfect State Transfer and Entanglement Generation with Coupled Cavities. International Journal of Theoretical Physics, 2010, 49, 120-127.	1.2	1
50	Generation of Cluster-Type Entangled Coherent States via Cavity QED. International Journal of Theoretical Physics, 2010, 49, 128-133.	1.2	2
51	Generation of Genuine Tripartite Macroscopic Entanglement in Y-type System. International Journal of Theoretical Physics, 2010, 49, 2841-2851.	1.2	2
52	Output squeezing and entanglement generation from a single atom with respect to a low-Qcavity. Physical Review A, 2010, 81, .	2.5	13
53	Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping. Physical Review A, 2009, 79, .	2.5	16
54	Bright entanglement generated in a four-level laser. Journal of Modern Optics, 2009, 56, 1607-1612.	1.3	2

#	Article	IF	CITATIONS
55	Generation of multi-mode-entangled light. Optics Communications, 2009, 282, 1593-1597.	2.1	17
56	Entanglement Teleportation Via a Two-qubit Heisenberg Chain under a Nonuniform Magnetic Field. International Journal of Theoretical Physics, 2008, 47, 1836-1843.	1.2	5
57	A macroscopical entangled coherent state generator in a V configuration atom system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 025501.	1.5	21
58	Thermal Entanglement of XXZ Heisenberg Chain under Rectangle Magnetic Field. International Journal of Theoretical Physics, 2007, 46, 2437-2442.	1.2	7
59	Quantum Correlations Between a Pair of Photons inÂaÂΔ-Type Atom. International Journal of Theoretical Physics, 2007, 46, 3242-3246.	1.2	3
60	Entangling Two-Atom Through Cooperative Interaction Under Stimulated Emission. International Journal of Theoretical Physics, 2006, 45, 2247-2256.	1.2	6
61	CERTAIN QUANTUM KEY DISTRIBUTION ACHIEVED BY USING BELL STATES. International Journal of Quantum Information, 2006, 04, 899-906.	1.1	6
62	Dissipation of System and Atom in Two-Photon Jaynes–Cummings Model with Degenerate Atomic Levels. International Journal of Theoretical Physics, 2005, 44, 1373-1382.	1.2	11
63	QUANTUM ENTANGLEMENT OF PHOTONS IN DOUBLED q-FOCK SPACE. Modern Physics Letters A, 2001, 16, 2579-2589.	1.2	1