
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4228580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raman Spectroscopy of Boron-Doped Single-Layer Graphene. ACS Nano, 2012, 6, 6293-6300.	7.3	245
2	Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Science Advances, 2017, 3, e1602813.	4.7	213
3	Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.	3.3	177
4	Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Science Advances, 2016, 2, e1600322.	4.7	174
5	Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (W _{<i>x</i>} Mo _{1–<i>x</i>} S ₂) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. ACS Nano, 2017, 11, 5103-5112.	7.3	157
6	Single-atom doping of MoS ₂ with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Science Advances, 2020, 6, eabc4250.	4.7	136
7	Angstrom-Size Defect Creation and Ionic Transport through Pores in Single-Layer MoS ₂ . Nano Letters, 2018, 18, 1651-1659.	4.5	129
8	Carbon doping of WS ₂ monolayers: Bandgap reduction and p-type doping transport. Science Advances, 2019, 5, eaav5003.	4.7	119
9	Largeâ€Area Siâ€Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Advanced Materials, 2014, 26, 7593-7599.	11.1	116
10	Monolayer Vanadiumâ€Doped Tungsten Disulfide: A Roomâ€Temperature Dilute Magnetic Semiconductor. Advanced Science, 2020, 7, 2001174.	5.6	104
11	Monolayer WS ₂ Nanopores for DNA Translocation with Light-Adjustable Sizes. ACS Nano, 2017, 11, 1937-1945.	7.3	102
12	Universal <i>In Situ</i> Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. ACS Nano, 2020, 14, 4326-4335.	7.3	100
13	Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS ₂ monolayers produced by different growth methods. Journal of Materials Research, 2016, 31, 931-944.	1.2	95
14	Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers. APL Materials, 2014, 2, .	2.2	93
15	Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 9532-9540.	5.2	91
16	Lowâ€Temperature Solution Synthesis of Few‣ayer 1T ′â€MoTe ₂ Nanostructures Exhibiti Lattice Compression. Angewandte Chemie - International Edition, 2016, 55, 2830-2834.	^{ng} 7.2	84
17	Formation of Nitrogen-Doped Graphene Nanoribbons <i>via</i> Chemical Unzipping. ACS Nano, 2013, 7, 2192-2204.	7.3	80
18	Nobleâ€Metalâ€Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. Advanced Materials, 2017, 29, 1603617.	11.1	73

#	Article	IF	CITATIONS
19	Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nature Chemistry, 2020, 12, 284-293.	6.6	73
20	Low-Temperature Solution Synthesis of Transition Metal Dichalcogenide Alloys with Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 11096-11105.	6.6	68
21	Controlling Nitrogen Doping in Graphene with Atomic Precision: Synthesis and Characterization. Nanomaterials, 2019, 9, 425.	1.9	67
22	Intricate Resonant Raman Response in Anisotropic ReS ₂ . Nano Letters, 2017, 17, 5897-5907.	4.5	66
23	Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment. Nanoscale, 2011, 3, 4359.	2.8	60
24	Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2017, 9, 15005-15014.	4.0	59
25	Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS ₂ . Science Advances, 2020, 6, .	4.7	56
26	Nanostructured carbon materials for enhanced nitrobenzene adsorption: Physical vs. chemical surface properties. Carbon, 2018, 139, 833-844.	5.4	55
27	Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges. ACS Nano, 2012, 6, 2261-2272.	7.3	54
28	Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides <i>via</i> Mechanical Instabilities. ACS Nano, 2017, 11, 9191-9199.	7.3	53
29	Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene. Carbon, 2019, 145, 175-186.	5.4	52
30	Controlled Fragmentation of Single-Atom-Thick Polycrystalline Graphene. Matter, 2020, 2, 666-679.	5.0	45
31	A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications. Applied Sciences (Switzerland), 2016, 6, 109.	1.3	44
32	High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. Journal of Materials Chemistry A, 2016, 4, 74-82.	5.2	41
33	Dynamics of cleaning, passivating and doping monolayer MoS ₂ by controlled laser irradiation. 2D Materials, 2019, 6, 045031.	2.0	40
34	Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23261-23270.	4.0	40
35	Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes. Nanoscale, 2018, 10, 12723-12733.	2.8	37
36	Quantification and Healing of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects. ACS Nano, 2021, 15, 9658-9669.	7.3	37

#	Article	IF	CITATIONS
37	Nonlinear Dark-Field Imaging of One-Dimensional Defects in Monolayer Dichalcogenides. Nano Letters, 2020, 20, 284-291.	4.5	34
38	Linear carbon chains inside multi-walled carbon nanotubes: Growth mechanism, thermal stability and electrical properties. Carbon, 2016, 107, 217-224.	5.4	33
39	Clean Transfer of 2D Transition Metal Dichalcogenides Using Cellulose Acetate for Atomic Resolution Characterizations. ACS Applied Nano Materials, 2019, 2, 5320-5328.	2.4	33
40	On the Role of Transition Metal Salts During Electrochemical Exfoliation of Graphite: Antioxidants or Metal Oxide Decorators for Energy Storage Applications. Advanced Functional Materials, 2018, 28, 1804357.	7.8	32
41	Optically and Biologically Active Mussel Protein oated Doubleâ€Walled Carbon Nanotubes. Small, 2011, 7, 3292-3297.	5.2	31
42	Study of the growth of CeO2 nanoparticles onto titanate nanotubes. Journal of Physics and Chemistry of Solids, 2015, 87, 213-220.	1.9	31
43	Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes. Carbon, 2018, 130, 105-111.	5.4	31
44	CO2 Sensing by in-situ Raman spectroscopy using activated carbon generated from mesocarp of babassu coconut. Vibrational Spectroscopy, 2018, 98, 111-118.	1.2	31
45	Defect-mediated selective hydrogenation of nitroarenes on nanostructured WS ₂ . Chemical Science, 2019, 10, 10310-10317.	3.7	30
46	Defect creation in WSe ₂ with a microsecond photoluminescence lifetime by focused ion beam irradiation. Nanoscale, 2020, 12, 2047-2056.	2.8	30
47	Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. ACS Nano, 2020, 14, 6570-6581.	7.3	30
48	Chirality-Dependent Transport in Double-Walled Carbon Nanotube Assemblies: The Role of Inner Tubes. ACS Nano, 2011, 5, 7547-7554.	7.3	28
49	Raman spectroscopy revealing noble gas adsorption on single-walled carbon nanotube bundles. Carbon, 2018, 127, 312-319.	5.4	26
50	Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids. Scientific Reports, 2016, 6, 20083.	1.6	23
51	Solution synthesis of few-layer WTe ₂ and Mo _x W _{1â°'x} Te ₂ nanostructures. Journal of Materials Chemistry C, 2017, 5, 11317-11323.	2.7	23
52	Lowâ€Temperature Solution Synthesis of Few‣ayer 1T ′â€MoTe 2 Nanostructures Exhibiting Lattice Compression. Angewandte Chemie, 2016, 128, 2880-2884.	1.6	22
53	Functional hetero-interfaces in atomically thin materials. Materials Today, 2020, 37, 74-92.	8.3	21
54	Mechanically Tough, Electrically Conductive Polyethylene Oxide Nanofiber Web Incorporating DNA-Wrapped Double-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2013, 5, 4150-4154.	4.0	20

#	Article	IF	CITATIONS
55	Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications. Carbon Letters, 2020, 30, 527-534.	3.3	20
56	Photoluminescence Enhancement of Titanate Nanotubes by Insertion of Rare Earth Ions in Their Interlayer Spaces. Journal of Nanomaterials, 2017, 2017, 1-9.	1.5	19
57	Synthesis of V-MoS ₂ Layered Alloys as Stable Li-Ion Battery Anodes. ACS Applied Energy Materials, 2019, 2, 8625-8632.	2.5	19
58	Confined Crack Propagation in MoS ₂ Monolayers by Creating Atomic Vacancies. ACS Nano, 2021, 15, 1210-1216.	7.3	19
59	Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. Carbon, 2018, 132, 512-519.	5.4	18
60	Defect-Assisted Heavily and Substitutionally Boron-Doped Thin Multiwalled Carbon Nanotubes Using High-Temperature Thermal Diffusion. Journal of Physical Chemistry C, 2014, 118, 4454-4459.	1.5	17
61	Electric field induced metallic behavior in thin crystals of ferroelectric <i>α</i> -In2Se3. Applied Physics Letters, 2020, 117, .	1.5	17
62	Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence. Nanoscale, 2012, 4, 130-136.	2.8	16
63	Boron Atoms as Loop Accelerator and Surface Stabilizer in Plateletâ€Type Carbon Nanofibers. ChemPhysChem, 2010, 11, 2345-2348.	1.0	15
64	Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based nanohybrids grown by pulsed laser deposition. Carbon, 2016, 96, 145-152.	5.4	15
65	Facile 1D graphene fiber synthesis from an agricultural by-product: A silicon-mediated graphenization route. Carbon, 2019, 142, 78-88.	5.4	14
66	Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano, 2021, 15, 2447-2457.	7.3	14
67	Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. RSC Advances, 2013, 3, 4161.	1.7	13
68	Lightâ€Emitting Transition Metal Dichalcogenide Monolayers under Cellular Digestion. Advanced Materials, 2018, 30, 1703321.	11.1	13
69	A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. Nanoscale, 2013, 5, 10212.	2.8	12
70	Excitonic processes in atomically-thin MoSe ₂ /MoS ₂ vertical heterostructures. 2D Materials, 2018, 5, 031016.	2.0	12
71	PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Materials Today Energy, 2020, 16, 100378.	2.5	12
72	Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets. Journal of Physics and Chemistry of Solids, 2017, 111, 335-342.	1.9	11

#	Article	IF	CITATIONS
73	H2O2/UV layer-by-layer oxidation of multiwall carbon nanotubes: The "onion effect―and the control of the degree of surface crystallinity and diameter. Carbon, 2018, 139, 1027-1034.	5.4	10
74	Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2D Materials, 2020, 7, 045020.	2.0	10
75	Unusually High Dispersion of Nitrogen-Doped Carbon Nanotubes in DNA Solution. Journal of Physical Chemistry B, 2011, 115, 14295-14300.	1.2	8
76	Outer Tube-Selectively Boron-Doped Double-Walled Carbon Nanotubes for Thermoelectric Applications. ACS Applied Nano Materials, 2020, 3, 3347-3354.	2.4	8
77	Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy. Physical Review B, 2018, 97, .	1.1	7
78	Superconductivity enhancement in phase-engineered molybdenum carbide/disulfide vertical heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19685-19693.	3.3	6
79	Multiple excitations and temperature study of the disorder-induced Raman bands in MoS ₂ . 2D Materials, 2021, 8, 035042.	2.0	6
80	Determination of the stacking order of curved few-layered graphene systems. Nanoscale, 2012, 4, 6419.	2.8	5
81	Boron-assisted coalescence of parallel multi-walled carbon nanotubes. RSC Advances, 2013, 3, 26266.	1.7	5
82	3d transition metal coordination on monolayer MoS ₂ : a facile doping method to functionalize surfaces. Nanoscale, 2022, 14, 10801-10815.	2.8	5
83	Growth manner of rod-shaped ZnO crystals at low temperature without any seed/buffer layer on a polyimide film. CrystEngComm, 2021, 23, 2039-2047.	1.3	1
84	Graphene: Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing (Adv. Mater. 45/2014). Advanced Materials, 2014, 26, 7676-7676.	11.1	0
85	Electrochemical Exfoliation: On the Role of Transition Metal Salts During Electrochemical Exfoliation of Graphite: Antioxidants or Metal Oxide Decorators for Energy Storage Applications (Adv. Funct. Mater. 48/2018). Advanced Functional Materials, 2018, 28, 1870345.	7.8	Ο