Steven M Jay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4228532/publications.pdf

Version: 2024-02-01

117453 128067 12,103 68 34 60 citations h-index g-index papers 71 71 71 18989 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
2	Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell, 2013, 153, 828-839.	13.5	791
3	Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4669-4674.	3.3	495
4	Combination delivery of TGF- \hat{l}^2 inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nature Materials, 2012, 11, 895-905.	13.3	456
5	Preservation and Storage Stability of Extracellular Vesicles for Therapeutic Applications. AAPS Journal, 2018, 20, 1.	2.2	294
6	Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Molecular Pharmaceutics, 2015, 12, 3650-3657.	2.3	282
7	Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication. Cellular and Molecular Bioengineering, 2016, 9, 315-324.	1.0	235
8	Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2015, 21, 45-54.	2.5	188
9	Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. Journal of Extracellular Vesicles, 2019, 8, 1684862.	5 . 5	177
10	Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. Journal of Controlled Release, 2009, 134, 26-34.	4.8	167
11	Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cellâ€derived extracellular vesicles. Bioengineering and Translational Medicine, 2017, 2, 170-179.	3.9	159
12	Enhanced Loading of Functional miRNA Cargo via pH Gradient Modification of Extracellular Vesicles. Molecular Therapy, 2020, 28, 975-985.	3.7	102
13	Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system. Acta Biomaterialia, 2019, 95, 236-244.	4.1	91
14	Foreign Body Giant Cell Formation Is Preceded by Lamellipodia Formation and Can Be Attenuated by Inhibition of Rac1 Activation. American Journal of Pathology, 2007, 171, 632-640.	1.9	88
15	Circulating Plasma Extracellular Vesicles from Septic Mice Induce Inflammation via MicroRNA- and TLR7-Dependent Mechanisms. Journal of Immunology, 2018, 201, 3392-3400.	0.4	88
16	Towards rationally designed biomanufacturing of therapeutic extracellular vesicles: impact of the bioproduction microenvironment. Biotechnology Advances, 2018, 36, 2051-2059.	6.0	88
17	Dual delivery of VEGF and MCP-1 to support endothelial cell transplantation for therapeutic vascularization. Biomaterials, 2010, 31, 3054-3062.	5.7	85
18	An Engineered Bivalent Neuregulin Protects Against Doxorubicin-Induced Cardiotoxicity With Reduced Proneoplastic Potential. Circulation, 2013, 128, 152-161.	1.6	84

#	Article	IF	CITATIONS
19	Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. Journal of Controlled Release, 2011, 156, 109-115.	4.8	72
20	3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials, 2019, 222, 119423.	5.7	71
21	Cardiac regeneration using humanâ€induced pluripotent stem cellâ€derived biomaterialâ€free 3Dâ€bioprinted cardiac patch in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2031-2039.	1.3	66
22	HOTAIR‣oaded Mesenchymal Stem/Stromal Cell Extracellular Vesicles Enhance Angiogenesis and Wound Healing. Advanced Healthcare Materials, 2022, 11, e2002070.	3.9	62
23	Engineering of multifunctional gels integrating highly efficient growth factor delivery with endothelial cell transplantation. FASEB Journal, 2008, 22, 2949-2956.	0.2	60
24	IL-12 stimulates CTLs to secrete exosomes capable of activating bystander CD8+ T cells. Scientific Reports, 2017, 7, 13365.	1.6	53
25	Extracellular Vesicles as an Emerging Frontier in Spinal Cord Injury Pathobiology and Therapy. Trends in Neurosciences, 2021, 44, 492-506.	4.2	53
26	Ethanol Induces Enhanced Vascularization Bioactivity of Endothelial Cell-Derived Extracellular Vesicles via Regulation of MicroRNAs and Long Non-Coding RNAs. Scientific Reports, 2017, 7, 13794.	1.6	52
27	Human Aortic Smooth Muscle Cells Promote Arteriole Formation by Coengrafted Endothelial Cells. Tissue Engineering - Part A, 2009, 15, 165-173.	1.6	48
28	CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1147-1156.	1.1	47
29	A platform of genetically engineered bacteria as vehicles for localized delivery of therapeutics: Toward applications for Crohn's disease. Bioengineering and Translational Medicine, 2018, 3, 209-221.	3.9	47
30	Functionalized poly(lactic-co-glycolic acid) enhances drug delivery and provides chemical moieties for surface engineering while preserving biocompatibility. Acta Biomaterialia, 2009, 5, 2860-2871.	4.1	43
31	Genetic Interactions With <i>CLF1</i> Identify Additional Pre-mRNA Splicing Factors and a Link Between Activators of Yeast Vesicular Transport and Splicing. Genetics, 2003, 164, 895-907.	1.2	43
32	Protein Engineering for Cardiovascular Therapeutics. Circulation Research, 2013, 113, 933-943.	2.0	42
33	Therapeutic potential of extracellular <scp>vesicleâ€associated</scp> long <scp>noncoding RNA</scp> . Bioengineering and Translational Medicine, 2020, 5, e10172.	3.9	41
34	VEGF-A and Semaphorin3A: Modulators of vascular sympathetic innervation. Developmental Biology, 2009, 334, 119-132.	0.9	38
35	Production of Extracellular Vesicles Loaded with Therapeutic Cargo. Methods in Molecular Biology, 2018, 1831, 37-47.	0.4	37
36	Transmucosal delivery of testosterone in rabbits using novel biâ€layer mucoadhesive waxâ€film composite disks. Journal of Pharmaceutical Sciences, 2002, 91, 2016-2025.	1.6	35

#	Article	IF	Citations
37	Macrophage fusion leading to foreign body giant cell formation persists under phagocytic stimulation by microspheres <i>in vitro</i> and <i>in vivo</i> in mouse models. Journal of Biomedical Materials Research - Part A, 2010, 93A, 189-199.	2.1	33
38	Electropolymerization on Microelectrodes:Â Functionalization Technique for Selective Protein and DNA Conjugation. Analytical Chemistry, 2006, 78, 6340-6346.	3.2	28
39	Pigment Epithelium-Derived Factor (PEDF) Suppresses IL- $1\hat{l}^2$ -Mediated c-Jun N-Terminal Kinase (JNK) Activation to Improve Hepatocyte Insulin Signaling. Endocrinology, 2014, 155, 1373-1385.	1.4	27
40	Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nature Communications, 2021, 12, 3696.	5.8	27
41	Shining light on a new class of hydrogels. Nature Biotechnology, 2009, 27, 543-544.	9.4	26
42	Sustained released of bioactive mesenchymal stromal cellâ€derived extracellular vesicles from 3Dâ€printed gelatin methacrylate hydrogels. Journal of Biomedical Materials Research - Part A, 2022, 110, 1190-1198.	2.1	26
43	Extracellular miR-146a-5p Induces Cardiac Innate Immune Response and Cardiomyocyte Dysfunction. ImmunoHorizons, 2020, 4, 561-572.	0.8	25
44	Engineered Bivalent Ligands to Bias ErbB Receptor-mediated Signaling and Phenotypes. Journal of Biological Chemistry, 2011, 286, 27729-27740.	1.6	23
45	Engineered Multivalency Enhances Affibody-Based HER3 Inhibition and Downregulation in Cancer Cells. Molecular Pharmaceutics, 2017, 14, 1047-1056.	2.3	21
46	Bacterial Extracellular Vesicles and the Gutâ€Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics. Advanced Biology, 2021, 5, e2000540.	1.4	18
47	A Net Mold-Based Method of Biomaterial-Free Three-Dimensional Cardiac Tissue Creation. Tissue Engineering - Part C: Methods, 2019, 25, 243-252.	1.1	17
48	Role of extracellular microRNA-146a-5p in host innate immunity and bacterial sepsis. IScience, 2021, 24, 103441.	1.9	16
49	Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. Advanced Therapeutics, 2021, 4, 2000259.	1.6	14
50	Ubiquitin Conjugation Probed by Inflammation in Myeloid-Derived Suppressor Cell Extracellular Vesicles. Journal of Proteome Research, 2018, 17, 315-324.	1.8	13
51	Spatiotemporal Control over Molecular Delivery and Cellular Encapsulation from Electropolymerized Micro―and Nanopatterned Surfaces. Advanced Functional Materials, 2009, 19, 2888-2895.	7.8	9
52	Protein-based vehicles for biomimetic RNAi delivery. Journal of Biological Engineering, 2019, 13, 19.	2.0	9
53	Homologous Quorum Sensing Regulatory Circuit: A Dual-Input Genetic Controller for Modulating Quorum Sensing-Mediated Protein Expression in E. coli. ACS Synthetic Biology, 2020, 9, 2692-2702.	1.9	9
54	Emerging Impact of Extracellular Vesicles on Tissue Engineering and Regeneration. Tissue Engineering - Part A, 2017, 23, 1210-1211.	1.6	5

#	Article	IF	Citations
55	HER3-Targeted Affibodies with Optimized Formats Reduce Ovarian Cancer Progression in a Mouse Xenograft Model. AAPS Journal, 2019, 21, 48.	2.2	3
56	Protein silencing to stop a "silent killer― Science Translational Medicine, 2019, 11, .	5.8	2
57	Biodegradable Microparticles Based on Poly(D,L-Lactide) as a Protective Transport System in Ruminant Digestion. Pharmaceutical Development and Technology, 2006, 11, 485-491.	1.1	1
58	Patching up the Myocardium. Circulation Research, 2011, 109, 480-481.	2.0	1
59	A large (scale) advance for small RNA therapeutics. Science Translational Medicine, 2018, 10, .	5.8	1
60	Extracellular Vesicle Loading Via pH-Gradient Modification. Methods in Molecular Biology, 2022, 2504, 231-239.	0.4	1
61	Engineered molecular delivery for control and enhancement of transplanted endothelial cell fate in tissue engineering., 2009,,.		O
62	Extracellular Vesicles and their Versatile Roles in Tissue Engineering. Tissue Engineering - Part A, 2017,	1.6	0
63	Introduction to Editorial Board Member: Professor W. Mark Saltzman. Bioengineering and Translational Medicine, 2020, 5, e10174.	3.9	O
64	An EVolving approach to directed enzyme prodrug therapy for cancer. Science Translational Medicine, 2018, 10, .	5.8	0
65	Slow and steady wins the race. Science Translational Medicine, 2018, 10, .	5.8	O
66	<i>A New Hope</i> for chronic myocardial ischemia. Science Translational Medicine, 2018, 10, .	5.8	0
67	Special delivery by "armored―CAR-T. Science Translational Medicine, 2018, 10, .	5.8	0
68	Both sides of the CRISPR coin. Science Translational Medicine, 2019, 11, .	5.8	0