
Guruprakash Karkera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4228102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TiO ₂ coated carbon nanotubes for electrochemical energy storage. Journal of Materials Chemistry A, 2014, 2, 1757-1766.	10.3	69
2	Recent developments and future perspectives of anionic batteries. Journal of Power Sources, 2021, 481, 228877.	7.8	68
3	Highâ€Entropy Sulfides as Electrode Materials for Liâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	19.5	57
4	Electrochemical and compositional characterization of solid interphase layers in an interface-modified solid-state Li–sulfur battery. Journal of Materials Chemistry A, 2020, 8, 16451-16462.	10.3	44
5	Design and Development of Efficient Bifunctional Catalysts by Tuning the Electronic Properties of Cobalt–Manganese Tungstate for Oxygen Reduction and Evolution Reactions. ChemCatChem, 2017, 9, 3681-3690.	3.7	43
6	The influence of ruthenium substitution in LaCoO ₃ towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 20612-20620.	10.3	32
7	Facile Approach To Prepare Multiple Heteroatom-Doped Carbon Material from Bagasse and Its Applications toward Lithium-Ion and Lithium–Sulfur Batteries. Energy & Fuels, 2021, 35, 8286-8294.	5.1	28
8	An Inorganic Electrolyte Li–O ₂ Battery with High Rate and Improved Performance. ACS Applied Energy Materials, 2018, 1, 1381-1388.	5.1	23
9	Ultrasonochemically-induced MnCo ₂ O ₄ nanospheres synergized with graphene sheet as a non-precious bi-functional cathode catalyst for rechargeable zinc–air battery. Nanoscale Advances, 2019, 1, 2392-2399.	4.6	17
10	Viable Synthesis of Porous MnCo ₂ O ₄ /Graphene Composite by Sonochemical Grafting: A Highâ€Rateâ€Capable Oxygen Cathode for Li–O ₂ Batteries. Chemistry - A European Journal, 2018, 24, 17303-17310.	3.3	16
11	Decoupling the Cumulative Contributions of Capacity Fade in Ethereal-Based Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 27870-27881.	8.0	15
12	Fluoride Perovskite (KNi _{<i>x</i>} Co _{1–<i>x</i>} F ₃) Oxygen-Evolution Electrocatalyst with Highly Polarized Electronic Configuration. ACS Applied Energy Materials, 2021, 4, 13425-13430.	5.1	12
13	Hierarchical α-MnO2 nanowires as an efficient anode material for rechargeable lithium-ion batteries. Materials Advances, 2022, 3, 1642-1651.	5.4	5
14	Tungsten Oxytetrachloride as a Positive Electrode for Chlorideâ€lon Batteries. Energy Technology, 2022, 10, .	3.8	3
15	Highâ€Entropy Sulfides as Electrode Materials for Liâ€Ion Batteries (Adv. Energy Mater. 8/2022). Advanced Energy Materials, 2022, 12, .	19.5	1