Manuel Dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4227925/publications.pdf

Version: 2024-02-01

56 papers 1,805 citations

279701 23 h-index 265120 42 g-index

56 all docs 56
docs citations

56 times ranked 1841 citing authors

#	Article	IF	CITATIONS
1	Finite strain analysis of limestone / basaltic magma interaction and fracture: Low order mixed tetrahedron and remeshing. European Journal of Mechanics, A/Solids, 2019, 73, 235-247.	2.1	1
2	A detailed study on the Fe-doped TiO2 thin films induced by pulsed laser deposition route. Applied Surface Science, 2019, 474, 211-217.	3.1	28
3	Preparation and characterization of dye-sensitized TiO2 nanorod solar cells. Thin Solid Films, 2015, 577, 103-108.	0.8	14
4	Structural Modification of TiO2 Nanorod Films with an Influence on the Photovoltaic Efficiency of a Dye-Sensitized Solar Cell (DSSC). Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 787-792.	1.9	12
5	Study of Vanadium Doped ZnO Films Prepared by dc Reactive Magnetron Sputtering at Different Substrate Temperatures. Journal of Nanoscience and Nanotechnology, 2013, 13, 1381-1384.	0.9	2
6	Effect of Annealing Temperature on TiO2 Nanorod Films Prepared by dc Reactive Magnetron Sputtering for Dye-Sensitized Solar Cells. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 770-776.	1.9	11
7	Simulation of the Optical Parameters and Study of the Physical Properties of the ITO Films Prepared by the IBAD. , 2010, , .		1
8	Effect of the deposition rate on ITO thin film properties prepared by ion beam assisted deposition (IBAD) technique. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1538-1542.	0.8	4
9	Study of Indium Tin Oxide Thin Films Deposited on Acrylics Substrates by Ion Beam Assisted Deposition Technique. Journal of Nanoscience and Nanotechnology, 2009, 9, 4151-4155.	0.9	8
10	The effect of the ion beam energy on the properties of indium tin oxide thin films prepared by ion beam assisted deposition. Thin Solid Films, 2008, 516, 1365-1369.	0.8	31
11	Indium tin oxide thin films prepared by ion beam assisted deposition technique at different ion beam currents. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1961-1966.	0.8	5
12	The optical properties of titanium oxide films prepared by dc reactive magnetron sputtering. , 2006, 6034, 63.		1
13	A study of the optical properties of titanium oxide films prepared by dc reactive magnetron sputtering. Applied Surface Science, 2006, 252, 7970-7974.	3.1	36
14	Optical and structural properties of vanadium pentoxide films prepared by d.c. reactive magnetron sputtering. Thin Solid Films, 2006, 515, 195-200.	0.8	88
15	Residual Stress Effects on Raman Spectra of RuO ₂ Thin Films. Materials Science Forum, 2005, 490-491, 583-588.	0.3	0
16	Raman spectroscopy analysis of magnetron sputtered RuO2 thin films. Thin Solid Films, 2003, 442, 93-97.	0.8	31
17	Study of ZrO2/Al2O3 multilayers. Vacuum, 2002, 64, 267-273.	1.6	30
18	Influence of sputtering pressure on the structure and properties of ZrO2 films prepared by rf reactive sputtering. Applied Surface Science, 2001, 173, 84-90.	3.1	47

#	Article	IF	CITATIONS
19	Characterisation of ZrO2 films prepared by rf reactive sputtering at different O2 concentrations in the sputtering gases. Vacuum, 2000, 56, 143-148.	1.6	84
20	A study of residual stress on rf reactively sputtered RuO2 thin films. Thin Solid Films, 2000, 375, 29-32.	0.8	17
21	Influence of sputtering power and the substrate–target distance on the properties of ZrO2 films prepared by RF reactive sputtering. Thin Solid Films, 2000, 377-378, 557-561.	0.8	32
22	Study of ZrO2–Y2O3 films prepared by rf magnetron reactive sputtering. Thin Solid Films, 2000, 377-378, 32-36.	0.8	45
23	Influence of the target-substrate distance on the properties of indium tin oxide films prepared by radio frequency reactive magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1668-1671.	0.9	17
24	Deposition of PZT thin film and determination of their optical properties. Journal of the European Ceramic Society, 1999, 19, 1489-1492.	2.8	9
25	Structural, chemical and optical characterisation of Ge-doped SiO2 glass films grown by magnetron rf-sputtering. Journal of Materials Processing Technology, 1999, 92-93, 269-273.	3.1	13
26	Characterization of RuO2 films prepared by rf reactive magnetron sputtering. Applied Surface Science, 1999, 147, 94-100.	3.1	16
27	Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature. Thin Solid Films, 1998, 322, 56-62.	0.8	145
28	Growth and characterisation of cadmium sulphide nanocrystals embedded in silicon dioxide films. Thin Solid Films, 1998, 312, 348-353.	0.8	36
29	Study of the effect of the oxygen partial pressure on the properties of rf reactive magnetron sputtered tin-doped indium oxide films. Applied Surface Science, 1997, 120, 243-249.	3.1	21
30	Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures. Surface and Coatings Technology, 1997, 90, 64-70.	2.2	79
31	Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron sputtering at different pressures. Thin Solid Films, 1997, 303, 151-155.	0.8	71
32	Stress Analysis of Titanium Dioxide Films by Raman Scattering and X-Ray Diffraction Methods. Materials Research Society Symposia Proceedings, 1996, 436, 523.	0.1	2
33	Structure effect on electrical properties of ITO films prepared by RF reactive magnetron sputtering. Thin Solid Films, 1996, 289, 65-69.	0.8	41
34	Structure Effect on Electrical Properties of Ito Films Prepared by Rf Reactive Magnetron Sputtering. Materials Research Society Symposia Proceedings, 1996, 426, 431.	0.1	2
35	Characterization of ZnO films prepared by dc reactive magnetron sputtering at different oxygen partial pressures. Vacuum, 1995, 46, 1001-1004.	1.6	21
36	Deposition and properties of titanium nitride films produced by dc reactive magnetron sputtering. Vacuum, 1995, 46, 233-239.	1.6	31

#	Article	IF	Citations
37	Interferometric detection of crossâ€phase modulation in CdS. Applied Physics Letters, 1994, 65, 959-961.	1.5	4
38	Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy. Applied Surface Science, 1994, 78, 57-61.	3.1	108
39	The influence of oxygen partial pressure and total pressure (O2 + Ar) on the properties of tin oxide films prepared by dc sputtering. Vacuum, 1994, 45, 1191-1195.	1.6	20
40	Zinc oxide films prepared by dc reactive magnetron sputtering at different substrate temperatures. Vacuum, 1994, 45, 19-22.	1.6	51
41	Study of porosity of titanium oxide films by X-ray photoelectron spectroscopy and IR transmittance. Thin Solid Films, 1994, 239, 117-122.	0.8	35
42	Direct current reactive magnetron sputtered zinc oxide thin films â€"the effect of the sputtering pressure. Thin Solid Films, 1994, 250, 26-32.	0.8	71
43	The effect of substrate temperature on the properties of sputtered tin oxide films. Thin Solid Films, 1994, 237, 112-117.	0.8	16
44	The influence of oxygen partial pressure on the properties of DC reactive magnetron sputtered titanium oxide films. Applied Surface Science, 1993, 68, 319-325.	3.1	41
45	The effect of substrate temperature on the properties of sputtered titanium oxide films. Applied Surface Science, 1993, 65-66, 235-239.	3.1	23
46	Optical properties of ZnO thin films deposited by dc reactive magnetron sputtering. Vacuum, 1993, 44, 105-109.	1.6	21
47	Evaluation of deposition techniques of cathode materials for solid oxide fuel cells. Materials Research Bulletin, 1993, 28, 101-109.	2.7	9
48	Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures. Thin Solid Films, 1993, 226, 22-29.	0.8	212
49	The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films. Thin Solid Films, 1993, 223, 242-247.	0.8	115
50	Thin film deposition by magnetron sputtering and determination of some physical parameters. Thin Solid Films, 1989, 176, 219-226.	0.8	23
51	Application of the photoacoustic technique to the determination of the thickness of multilayer films produced by magnetron sputtering. Vacuum, 1989, 39, 731-733.	1.6	4
52	Molybdenum coatings produced by magnetron sputtering. Vacuum, 1989, 39, 735-738.	1.6	4
53	Impurity Effects in the Raman and Luminescence Spectra of Nitrogenâ€Doped GaP. Physica Status Solidi (B): Basic Research, 1988, 147, 779-789.	0.7	2
54	Resonant Raman scattering on the NN3level of GaP:N. Journal of Physics C: Solid State Physics, 1985, 18, 6297-6302.	1.5	6

#	Article	IF	CITATIONS
55	Raman Detection of the Nitrogen Localized Mode in GaP:N. Physica Status Solidi (B): Basic Research, 1984, 126, K113.	0.7	6
56	Local induced activity in Resonant Raman scattering of GaP: N. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1983, 117-118, 108-109.	0.9	2