Shalendra Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4226696/publications.pdf

Version: 2024-02-01

264 papers 5,968 citations

76326 40 h-index 63 g-index

265 all docs

 $\begin{array}{c} 265 \\ \text{docs citations} \end{array}$

265 times ranked

4569 citing authors

#	Article	IF	CITATIONS
1	Structure and electrical properties of Co0.5CdxFe2.5â^'xO4 ferrites. Journal of Alloys and Compounds, 2008, 464, 361-369.	5.5	195
2	Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. Journal of Alloys and Compounds, 2012, 518, 11-18.	5 . 5	184
3	Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Current Applied Physics, 2009, 9, 1397-1406.	2.4	135
4	Influence of Al doping on electrical properties of Ni–Cd nano ferrites. Current Applied Physics, 2009, 9, 826-832.	2.4	131
5	Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites. Journal of Magnetism and Magnetic Materials, 2018, 449, 319-327.	2.3	130
6	Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles. Journal of Alloys and Compounds, 2012, 511, 107-114.	5.5	127
7	Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. Journal of Alloys and Compounds, 2013, 549, 348-357.	5. 5	114
8	Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Materials Chemistry and Physics, 2013, 139, 364-374.	4.0	105
9	Defects and oxygen vacancies tailored structural and optical properties in CeO2 nanoparticles doped with Sm3+ cation. Journal of Alloys and Compounds, 2018, 752, 520-531.	5. 5	104
10	Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectronic Engineering, 2012, 89, 129-132.	2.4	98
11	A Novel Synthesis of the Graphene Oxide-Silver (GO-Ag) Nanocomposite for Unique Physiochemical Applications. ACS Omega, 2020, 5, 5041-5047.	3.5	96
12	Influence of frequency, temperature and composition on electrical properties of polycrystalline Co0.5CdxFe2.5â^'xO4 ferrites. Physica B: Condensed Matter, 2008, 403, 684-701.	2.7	91
13	Morphological evolution between nanorods to nanosheets and room temperature ferromagnetism of Fe-doped ZnO nanostructures. CrystEngComm, 2012, 14, 4016.	2.6	86
14	Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polymer Composites, 2020, 41, 2792-2802.	4.6	85
15	Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films, 2011, 519, 8375-8378.	1.8	82
16	Finite size effect and influence of temperature on electrical properties of nanocrystalline Ni–Cd ferrites. Current Applied Physics, 2009, 9, 1072-1078.	2.4	77
17	Structural and Magnetic Properties of Ni Doped CeO ₂ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2010, 10, 7204-7207.	0.9	74
18	Structural and magnetic properties of chemically synthesized Fe doped ZnO. Journal of Applied Physics, 2009, 105, .	2.5	69

#	Article	IF	Citations
19	Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. Journal of Materials Science, 2020, 55, 14829-14847.	3.7	67
20	Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1â^'xMnxO3â€^(0.0â‰xâ‰0.4) multiferroics. Journal of Applied Physics, 2010, 107, .	2.5	66
21	Structural, electronic, and magnetic properties of Co doped SnO2 nanoparticles. Journal of Applied Physics, 2010, 107, .	2.5	66
22	Electronic Structure and Room Temperature Ferromagnetism in Gdâ€doped Cerium Oxide Nanoparticles for Hydrogen Generation via Photocatalytic Water Splitting. Global Challenges, 2019, 3, 1800090.	3.6	62
23	Magnetic Properties of Fe and Ni Doped SnO $<$ sub $>$ 2 $<$ /sub $>$ Nanoparticles. Nanomaterials and Nanotechnology, 2011, 1, 6.	3.0	61
24	Study of ac impedance spectroscopy of Al doped MnFe2â^2xAl2xO4. Journal of Alloys and Compounds, 2009, 480, 596-602.	5 . 5	60
25	Investigation of structural and optical properties of ZnO thin films of different thickness grown by pulsed laser deposition method. Physica B: Condensed Matter, 2019, 552, 221-226.	2.7	57
26	Room temperature ferromagnetism in chemically synthesized ZnO rods. Materials Letters, 2009, 63, 194-196.	2.6	56
27	Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni–Mg ferrite. Ceramics International, 2013, 39, 1807-1819.	4.8	55
28	Exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0.5Zn0.5â^xCoxFe2O4 nanocrystalline ferrite. Journal of Magnetism and Magnetic Materials, 2014, 360, 21-33.	2.3	55
29	Influence of the doping of Ti4+ ions on electrical and magnetic properties of Mn1+xFe2â^'2xTixO4 ferrite. Journal of Alloys and Compounds, 2009, 469, 451-457.	5.5	54
30	RAPID AND COST EFFECTIVE SYNTHESIS OF ZnO NANORODS USING MICROWAVE IRRADIATION TECHNIQUE. Functional Materials Letters, 2011, 04, 1-5.	1.2	53
31	Structural properties and magnetic interactions in Ni0.5Mg0.5Fe2â^'xCrxO4 (0 ≠x ≠1) ferrite nanoparticles. Powder Technology, 2012, 229, 37-44.	4.2	51
32	Mössbauer studies of Co0.5CdxFe2.5â^'xO4 (0.0⩽x⩽0.5) ferrite. Physica B: Condensed Matter, 2008, 4 3604-3607.	03 <u>.</u> 2.7	50
33	Direct relationship between lattice volume, bandgap, morphology and magnetization of transition metals (Cr, Mn and Fe)-doped ZnO nanostructures. Acta Materialia, 2012, 60, 5190-5196.	7.9	49
34	Impact of annealing on the structural and optical properties of ZnO nanoparticles and tracing the formation of clusters via DFT calculation. Arabian Journal of Chemistry, 2020, 13, 2207-2218.	4.9	48
35	Oxygen vacancies and F+ centre tailored room temperature ferromagnetic properties of CeO2 nanoparticles with Pr doping concentrations and annealing in hydrogen environment. Journal of Alloys and Compounds, 2020, 844, 156079.	5.5	48
36	Influence of Sm doping on structural, ferroelectric, electrical, optical and magnetic properties of BaTiO3. Vacuum, 2021, 184, 109872.	3 . 5	47

#	Article	IF	Citations
37	Above room temperature magnetic transition and magnetocaloric effect in La0.66Sr0.34MnO3. Journal of the Korean Physical Society, 2012, 60, 1587-1592.	0.7	46
38	Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization. Journal of Alloys and Compounds, 2015, 642, 70-77.	5.5	46
39	Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli (E. coli). Current Applied Physics, 2011, 11, S360-S363.	2.4	44
40	Engineering the optical properties of Cu doped CeO2 NCs for application in white LED. Ceramics International, 2020, 46, 7482-7488.	4.8	44
41	Structural, optical, elastic and magnetic properties of Ce and Dy doped cobalt ferrites. Journal of Alloys and Compounds, 2020, 834, 155089.	5.5	43
42	Growth and characterization of ZnO nanorods by microwave-assisted route: green chemistry approach. Advanced Materials Letters, 2011, 2, 183-187.	0.6	43
43	Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite. Physica B: Condensed Matter, 2012, 407, 4097-4103.	2.7	41
44	Room temperature ferromagnetism in Ni doped In2O3 nanoparticles. Thin Solid Films, 2011, 519, 8243-8246.	1.8	39
45	Study the contribution of surface defects on the structural, electronic structural, magnetic, and photocatalyst properties of Fe: CeO2 nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 2019, 235, 29-39.	1.7	39
46	Study of humidity sensing properties and ion beam induced modifications in SnO2-TiO2 nanocomposite thin films. Surface and Coatings Technology, 2020, 392, 125768.	4.8	39
47	Lattice defects and oxygen vacancies formulated ferromagnetic, luminescence, structural properties and band-gap tuning in Nd3+ substituted ZnO nanoparticles. Journal of Luminescence, 2022, 243, 118673.	3.1	39
48	Irreversible magnetic behavior with temperature variation of Ni0.5Co0.5Fe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 507, 166861.	2.3	38
49	Construction of strontium phosphate/graphitic-carbon nitride: A flexible and disposable strip for acetaminophen detection. Journal of Hazardous Materials, 2021, 410, 124542.	12.4	38
50	Electronic structure studies of Fe-doped ZnO nanorods by x-ray absorption fine structure. Journal Physics D: Applied Physics, 2009, 42, 175406.	2.8	37
51	Synthesis and ageing effect in FeO nanoparticles: Transformation to core–shell FeO/Fe3O4 and their magnetic characterization. Journal of Alloys and Compounds, 2011, 509, 6414-6417.	5.5	37
52	Effect of grinding aids on the grinding energy consumed during grinding of calcite in a stirred ball mill. Minerals Engineering, 2010, 23, 54-57.	4.3	36
53	Room temperature ferromagnetism in Fe-doped CeO2 thin films grown on LaAlO3 (001). Thin Solid Films, 2010, 519, 410-413.	1.8	36
54	Structural and optical study of samarium doped cerium oxide thin films prepared by electron beam evaporation. Journal of Alloys and Compounds, 2011, 509, 4525-4529.	5.5	36

#	Article	IF	CITATIONS
55	Tailored construction of one-dimensional TiO2/Au nanofibers: Validation of an analytical assay for detection of diphenylamine in food samples. Food Chemistry, 2022, 380, 132052.	8.2	36
56	Structural and electrical properties of Mg2TiO4. Journal of the Ceramic Society of Japan, 2009, 117, 689-692.	1.1	35
57	Magnetoelectric properties of BixCo2â^'xMnO4â€^(⩽x⩽0.3). Applied Physics Letters, 2008, 92, .	3.3	34
58	High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. Journal of Physics and Chemistry of Solids, 2018, 112, 29-36.	4.0	34
59	Defects/vacancies engineering and ferromagnetic behavior in pure ZnO and ZnO doped with Co nanoparticles. Materials Research Bulletin, 2016, 83, 108-115.	5.2	33
60	Defect induced room temperature ferromagnetism in well-aligned ZnO nanorods grown on Si (100) substrate. Thin Solid Films, 2011, 519, 8199-8202.	1.8	32
61	Study of structural, electrical and magnetic properties of Cr doped Ni–Mg ferrite nanoparticle. Journal of Alloys and Compounds, 2014, 602, 150-156.	5.5	32
62	Tailoring the structural, electronic structure and optical properties of Fe: SnO2 nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 2020, 240, 146934.	1.7	32
63	Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles. Materials Research Bulletin, 2014, 59, 377-381.	5.2	31
64	Influence of samarium doping on structural, elastic, magnetic, dielectric, and electrical properties of nanocrystalline cobalt ferrite. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	31
65	Temperature-dependent Mössbauer and dielectric studies of Mg0.95Mn0.05Fe1.0Ti1.0O4. Solid State Communications, 2007, 142, 706-709.	1.9	30
66	The nature and enhancement of magnetic surface contribution in model NiO nanoparticles. Nanotechnology, 2010, 21, 035602.	2.6	30
67	Study of nanocrystalline ceria thin films deposited by e-beam technique. Current Applied Physics, 2011, 11, S301-S304.	2.4	30
68	Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles. Materials Research Bulletin, 2015, 66, 76-82.	5.2	30
69	Magnetic study of Mg0.95Mn0.05Fe2O4 ferrite nanoparticles. Solid State Communications, 2007, 141, 203-208.	1.9	29
70	Structural and Magnetic Study of a Diluted Magnetic Semiconductor: Fe-Doped CeO ₂ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 555-559.	0.9	29
71	Electrical transport, magnetic, and electronic structure studies of Mg _{0.95} Mn _{0.05} Fe _{2a^2<i>x</i>} Ti _{2<i>x</i>} O _{4 ± Î} (0a‰ <i>x</i> 2007, 19, 476210.	1.8	28
72	Structural, magnetic and electronic structure studies of Mn doped TiO2 thin films. Applied Surface Science, 2011, 257, 10557-10561.	6.1	28

#	Article	IF	Citations
73	Signature of room temperature ferromagnetism in Mn doped CeO2 nanoparticles. Materials Research Bulletin, 2012, 47, 2980-2983.	5.2	28
74	Electronic structure study of Co doped CeO2 nanoparticles using X-ray absorption fine structure spectroscopy. Journal of Alloys and Compounds, 2014, 611, 329-334.	5.5	28
75	Defects and oxygen vacancies tailored structural, optical and electronic structure properties of Co-doped ZnO nanoparticle samples probed using soft X-ray absorption spectroscopy. Vacuum, 2020, 179, 109538.	3.5	28
76	Hydrothermal synthesis and indication of room temperature ferromagnetism in CeO2 nanowires. Materials Letters, 2011, 65, 3098-3101.	2.6	27
77	Study of structural and magnetic properties of (Co–Cu)Fe2O4/PANI composites. Materials Chemistry and Physics, 2013, 141, 406-415.	4.0	27
78	Structural and Magnetic Properties of Co Doped CeO\$_{2}\$ Nano-Particles. IEEE Transactions on Magnetics, 2009, 45, 2439-2441.	2.1	26
79	Study of magnetic entropy change in La0.65Sr0.35Cu0.1Mn0.9O3 complex perovskite. Journal of Electroceramics, 2013, 30, 46-50.	2.0	26
80	Capping agent-induced variation of physicochemical and biological properties of α-Fe2O3 nanoparticles. Materials Chemistry and Physics, 2021, 258, 123899.	4.0	26
81	Modeling and simulation of GaN based QW LED for UV emission. Optik, 2018, 158, 1334-1341.	2.9	25
82	Performance enhancement of UV quantum well light emitting diode through structure optimization. Optical and Quantum Electronics, 2019, 51, 1.	3.3	25
83	ROOM TEMPERATURE FERROMAGNETISM IN PURE AND Cu DOPED ZnO NANORODS: ROLE OF COPPER OR DEFECTS. Functional Materials Letters, 2011, 04, 17-20.	1.2	24
84	Investigation of structural, dielectric, magnetic and antibacterial activity of Cu–Cd–Ni–FeO4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2013, 341, 148-157.	2.3	24
85	Binder-Free Electrode Based on ZnO Nanorods Directly Grown on Aluminum Substrate for High Performance Supercapacitors. Nanomaterials, 2020, 10, 1979.	4.1	24
86	Influence of high energy ion irradiation on structural, morphological and optical properties of high-k dielectric hafnium oxide (HfO2) thin films grown by atomic layer deposition. Journal of Alloys and Compounds, 2020, 831, 154698.	5.5	24
87	Exploration of spectroscopic, surface morphological, structural, electrical, optical and mechanical properties of biocompatible PVA-GO PNCs. Diamond and Related Materials, 2022, 127, 109158.	3.9	24
88	Role of interparticle interactions on the magnetic behavior of Mg _{0.95} Mn _{0.05} Fe ₂ O ₄ ferrite nanoparticles. Journal of Physics Condensed Matter, 2008, 20, 235214.	1.8	23
89	Optimization of Type-II '' shaped InGaAsP/GaAsSb nanoscale-heterostructure under electric field and temperature. Superlattices and Microstructures, 2017, 112, 507-516.	3.1	23
90	Mössbauer and magnetic studies of multiferroic Mg0.95Mn0.05Fe2â^'2xTi2xO4 system. Journal of Applied Physics, 2006, 99, 08M910.	2.5	22

#	Article	IF	Citations
91	Investigation of local geometrical structure, electronic state and magnetic properties of PLD grown Ni doped SnO2 thin films. Journal of Electron Spectroscopy and Related Phenomena, 2019, 232, 21-28.	1.7	22
92	Effect of defects and oxygen vacancies on the RTFM properties of pure and Gd-doped CeO2 nanomaterials through soft XAS. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	22
93	Ferromagnetic Properties of Bulk Fe-doped CeO\$_2\$ Dilute Magnetic Semiconductors. Journal of the Korean Physical Society, 2009, 55, 1018-1021.	0.7	22
94	Influence of Ni2+ substitution on the structural, dielectric and magnetic properties of Cu–Cd ferrite nanoparticles. Journal of Alloys and Compounds, 2013, 573, 198-204.	5.5	21
95	Electronic structure and magnetic properties of Co doped TiO2 thin films using X-ray absorption spectroscopy. Ceramics International, 2015, 41, S370-S375.	4.8	21
96	Role of Fe doping on surface morphology, electronic structure and magnetic properties of Fe doped CeO2 thin film. Ceramics International, 2021, 47, 4012-4019.	4.8	21
97	Microwave Assisted Hydrothermal Synthesis and Magnetocaloric Properties of La _{0.67} Sr _{0.33} MnO ₃ Manganite. Journal of Nanoscience and Nanotechnology, 2012, 12, 5523-5526.	0.9	20
98	Structural, magnetic and magnetocaloric properties of La0.65Sr0.35V0.1Mn0.9O3 perovskite. Materials Research Bulletin, 2012, 47, 2977-2979.	5.2	20
99	Superparamagnetic behavior of indium substituted NiCuZn nano ferrites. Journal of Magnetism and Magnetic Materials, 2015, 381, 416-421.	2.3	20
100	Optical and electronic characteristics of ITO/NPB/Alq3:DCJTB/Alq3/Ag heterostructure based organic light emitting diode. Optik, 2020, 223, 165572.	2.9	20
101	Irradiation induced texturing in the Mg0.95Mn0.05Fe2O4 ferrite thin film. Thin Solid Films, 2009, 517, 2758-2761.	1.8	19
102	Comparative study of the Ag/PVP nanocomposites synthesized in water and in ethylene glycol. Current Applied Physics, 2011, 11, S346-S349.	2.4	19
103	Band gap engineering, electronic state and local atomic structure of Ni doped CeO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 4562-4571.	2.2	19
104	High pressure affects on optical characteristics of AlGaAs/GaAsP/AlGaAs nano-heterostructure. Optik, 2019, 181, 389-397.	2.9	19
105	Investigations of TM (Ni, Co) doping on structural, optical and magnetic properties of CeO2 nanoparticles. Vacuum, 2020, 181, 109717.	3.5	19
106	Ferromagnetism in Chemically-synthesized Co-doped ZnO. Journal of the Korean Physical Society, 2009, 55, 1060-1064.	0.7	19
107	Synthesis and tuning the exchange bias in Ni–NiO nanoparticulate systems. Journal of Applied Physics, 2010, 107, 09D725.	2.5	18
108	Development of Selenium Nanoparticle Based Agriculture Sensor for Heavy Metal Toxicity Detection. Agriculture (Switzerland), 2020, 10, 610.	3.1	18

#	Article	IF	CITATIONS
109	Fluorescence resonance energy transfer and surface Plasmon resonance induced enhanced photoluminescence and photoconductivity property of Au–TiO2 metal–semiconductor nanocomposite. Optical Materials, 2015, 40, 97-101.	3.6	17
110	Effects of rapid thermal annealing on the local environment, electronic structure and magnetic properties of Mn doped TiO 2 thin films. Applied Surface Science, 2018, 445, 287-297.	6.1	17
111	Role of Fe-Doping on Structural, Optical and Magnetic Properties of SnO2 Nanoparticles. Journal of Electronic Materials, 2019, 48, 8181-8192.	2.2	17
112	Interplay of structural, optical, and magnetic properties of Ce1-xNdxO2-δ nanoparticles with electronic structure probed using X-ray absorption spectroscopy. Vacuum, 2020, 180, 109537.	3.5	17
113	Oxygen vacancies and defects induced room temperature ferromagnetic properties of pure and Fe-doped CeO2 nanomaterials investigated using X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2022, 254, 147140.	1.7	17
114	Revisiting the physiochemical properties of Hematite ($\langle i \rangle \hat{l} \pm \langle i \rangle - Fe \langle sub \rangle 2 \langle sub \rangle 0 \langle sub \rangle 3 \langle sub \rangle$) nanoparticle and exploring its bio-environmental application. Materials Research Express, 2019, 6, 095072.	1.6	16
115	Exploration of structural, morphological and magnetic properties of transition metal doped SnO2 films grown using pulsed laser deposition. Vacuum, 2020, 182, 109725.	3.5	16
116	Monitoring Food Spoilage Based on a Defect-Induced Multiwall Carbon Nanotube Sensor at Room Temperature: Preventing Food Waste. ACS Omega, 2020, 5, 30531-30537.	3.5	16
117	INFLUENCE OF Co DOPING ON STRUCTURAL, OPTICAL AND MAGNETIC STUDIES OF Co -DOPED CeO₂ NANOPARTICLES. Nano, 2010, 05, 349-355.	1.0	15
118	Nanobiotechnology: Scope and Potential for Crop Improvement. , 2013, , 245-269.		15
119	Investigation of structural and magnetic properties of La doped Co–Mn ferrite nanoparticles in the presence of α-Fe2O3 phase. Solid State Communications, 2022, 342, 114629.	1.9	15
120	Electronic structure and electrochemical properties of La-doped BiFeO3 nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 2021, 253, 147138.	1.7	14
121	One Step Synthesis of Rutile TiO ₂ Nanoparticles at Low Temperature. Journal of Nanoscience and Nanotechnology, 2012, 12, 1555-1558.	0.9	13
122	Magnetic and electrical properties of La0.7Ca0.3Mn0.95Co0.05O3 epitaxial layers by pulsed laser deposition. Ceramics International, 2012, 38, S443-S446.	4.8	13
123	Electronic structure and dielectric properties of ZrO 2 -CeO 2 mixed oxides. Journal of Physics and Chemistry of Solids, 2018, 119, 242-250.	4.0	13
124	Improvement in efficiency of yellow Light Emitting Diode using InGaN barriers and modified electron injection layer. Optik, 2020, 206, 163716.	2.9	13
125	Growth of Defect-Induced Carbon Nanotubes for Low-Temperature Fruit Monitoring Sensor. Chemosensors, 2021, 9, 131.	3.6	13
126	Structural, magnetic and field-driven abrupt magnetocaloric properties of La1.4-xSmxCa1.6Mn2O7 Ruddlesden-Popper manganites. Journal of the European Ceramic Society, 2021, 41, 7050-7061.	5.7	13

#	Article	IF	Citations
127	Defects engineering and enhancement in optical and structural properties of 2D-MoS2 thin films by high energy ion beam irradiation. Materials Chemistry and Physics, 2022, 276, 125422.	4.0	13
128	Lead-free piezoelectric BiFeO3-BaTiO3 thin film with high Curie temperature. Current Applied Physics, 2016, 16, 1449-1452.	2.4	12
129	High energy (150†MeV) Fe11+ ion beam induced modifications of physico-chemical and photoluminescence properties of high-k dielectric nanocrystalline zirconium oxide thin films. Ceramics International, 2019, 45, 18887-18898.	4.8	12
130	Enhanced near-band edge emission in pulsed laser deposited ZnO/c-sapphire nanocrystalline thin films. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	12
131	Large Magnetic Entropy Change in La _{0.55} Ce _{0.2} Ca _{0.25} MnO ₃ Perovskite. Journal of Magnetics, 2011, 16, 457-460.	0.4	12
132	Investigation of local atomic structure of Ni doped SnO2 thin films via X-ray absorption spectroscopy and their magnetic properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 760-770.	2.2	11
133	Transport and Dielectric Properties of Mechanosynthesized La2/3Cu3Ti4O12 Ceramics. Crystals, 2021, 11, 313.	2.2	11
134	Synthesis of Magnetically Recoverable Ru/Fe3O4 Nanocomposite for Efficient Photocatalytic Degradation of Methylene Blue. Journal of Cluster Science, 2022, 33, 853-865.	3.3	11
135	Chemically inducing room temperature spin-crossover in double layered magnetic refrigerants Pr1.4+Sr1.6-Mn2O7 (0.0Ââ‰ÂxÂâ‰Â0.5). Journal of Materials Science and Technology, 2022, 124, 232-242.	10.7	11
136	Electronic structure studies of Mg0.95Mn0.05Fe2â^'2xTi2xO4 (0⩽x⩽0.8). Journal of Magnetism and Magnetic Materials, 2008, 320, e121-e124.	2.3	10
137	A comparative study of particle size analysis in fine powder: The effect of a polycomponent particulate system. Korean Journal of Chemical Engineering, 2009, 26, 300-305.	2.7	10
138	Effect of Fe doping on the room temperature ferromagnetism in chemically synthesized (In1â^'xFex)2O3 (0â@½xâ@½0.07) magnetic semiconductors. Current Applied Physics, 2010, 10, 333-336.	2.4	10
139	Structural and Magnetic Properties of Zn _{1â^'<i>x</i>} Co _{<i>x</i>} O Nanorods Prepared by Microwave Irradiation Technique. Journal of Nanoscience and Nanotechnology, 2012, 12, 1386-1389.	0.9	10
140	Introduction to X-Ray Absorption Spectroscopy and Its Applications in Material Science. , 2018, , 497-548.		10
141	Tuning the responsible parameters for gain characteristics of the novel type-II D-QW (InGaAs) heterostructure. Materials Science in Semiconductor Processing, 2022, 140, 106377.	4.0	10
142	Effect of Cu seed on the synthesis and characterization of FeCo alloy nano-particles by using polyol method. Science in China Series D: Earth Sciences, 2009, 52, 19-22.	0.9	9
143	NOVEL AND COST-EFFECTIVE SYNTHESIS OF SILVER NANOCRYSTALS: A GREEN SYNTHESIS. Nano, 2011, 06, 295-300.	1.0	9
144	Room-temperature ferromagnetism in Cu-doped ZnO nanorods prepared using a microwave irradiation method. Journal of the Korean Physical Society, 2012, 60, 1644-1648.	0.7	9

#	Article	IF	CITATIONS
145	Near-edge X-ray absorption fine structure spectroscopy and structural properties of Ni-doped CeO ₂ nanoparticles. Radiation Effects and Defects in Solids, 2017, 172, 985-994.	1.2	9
146	Superparamagnetic behavior of nanosized ZnFe 2 O 4. Materials Today: Proceedings, 2018, 5, 9855-9859.	1.8	9
147	Structural, diffuse reflectance and luminescence study of t-Mg2B2O5 nanostructures. Applied Physics A: Materials Science and Processing, 2021, 127, 617.	2.3	9
148	High energy (MeV) ion beam induced modifications in Al2O3-ZnO multilayers thin films grown by ALD and enhancement in photoluminescence, optical and structural properties. Vacuum, 2021, 192, 110435.	3.5	9
149	Studies on Synthesis and Characterization of Fe ₃ O ₄ @SiO ₂ @Ru Hybrid Magnetic Composites for Reusable Photocatalytic Application. Adsorption Science and Technology, 2022, 2022, .	3.2	9
150	Evolution of magnetic pillars using 200MeV Ag15+ ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1741-1748.	1.4	8
151	Structural and magnetic properties of bulk and thin films of Mg0.95Mn0.05Fe2O4. Current Applied Physics, 2009, 9, 1009-1013.	2.4	8
152	Magnetoresistance properties of 0.99La0.7(Ca Sr1â^')0.3MnO3/0.01CuZnFe4O4 composites. Ceramics International, 2012, 38, S439-S442.	4.8	8
153	Structural development and magnetic phenomenon in Zn–Cr–Fe multi oxide nano-crystals. Ceramics International, 2014, 40, 8357-8368.	4.8	8
154	First-Principles Investigation of Electronic Properties of GaAsxSb1 –x Ternary Alloys. Semiconductors, 2019, 53, 1584-1592.	0.5	8
155	Probing defects and electronic structure of Eu doped t-Mg2B2O5 nanocrystals using X-ray absorption near edge spectroscopy and luminescence techniques. Vacuum, 2020, 180, 109602.	3.5	8
156	Biosynthesis of CeO2 Nanoparticles Using Egg White and Their Antibacterial and Antibiofilm Properties on Clinical Isolates. Crystals, 2021, 11, 584.	2.2	8
157	Study of the electronic structure of Ce0.95Fe0.05O2-Î′ thin film using X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2021, 250, 147073.	1.7	8
158	One-Step Multi-Doping Process for Producing Effective Zinc Oxide Nanofibers to Remove Industrial Pollutants Using Sunlight. Crystals, 2021, 11, 1268.	2.2	8
159	STRUCTURAL AND MAGNETIC STUDY OF Co-DOPED ZnO NANOPARTICLES SYNTHESIZED BY AUTO COMBUSTION METHOD. International Journal of Nanoscience, 2011, 10, 1025-1028.	0.7	7
160	Tuning the surface morphology and local atomic structure of Mn–TiO2 thin films using rapid thermal annealing. Journal of Materials Science: Materials in Electronics, 2018, 29, 5982-5992.	2.2	7
161	Enhanced photoluminescence response of Ca2+/Ba2+ substituted solid solutions of SrS:Ce phosphors. Materials Letters, 2018, 227, 169-171.	2.6	7
162	Microwave Mediated Fast Synthesis of Silver Nanoparticles and Investigation of Their Antibacterial Activities for Gram-Positive and Gram-Negative Microorganisms. Crystals, 2021, 11, 666.	2.2	7

#	Article	IF	CITATIONS
163	Biosynthesis of ZnO Nanostructures Using <i>Azadirachta indica</i> Leaf Extract and Their Effect on Seed Germination and Seedling Growth of Tomato: An Eco-Friendly Approach. Journal of Nanoelectronics and Optoelectronics, 2020, 15, 1412-1422.	0.5	7
164	Synergistic Effect of Hexagonal Boron Nitride-Coated Separators and Multi-Walled Carbon Nanotube Anodes for Thermally Stable Lithium-Ion Batteries. Crystals, 2022, 12, 125.	2.2	7
165	Effect of Eu doping on the thermoluminescence of UV and gamma irradiated Mg ₂ B ₂ O ₅ nanophosphors. Luminescence, 2022, 37, 472-478.	2.9	7
166	Role of Cr Doping on the Structure, Electronic Structure, and Electrochemical Properties of BiFeO3 Nanoparticles. Materials, 2022, 15, 4118.	2.9	7
167	Synthesisation, electrical and magnetic properties of Al doped nano ferrite particles. International Journal of Nanoparticles, 2009, 2, 416.	0.3	6
168	Impedance spectroscopy study on Mn1+x Fe2â^'2x Ti x O4 (0⩽x⩽0.5) ferrites. Central South University, 2 17, 1133-1138.	2010, 0.5	6
169	Electronic Structure and Magnetic Properties of the NiO.2CdO.3Fe2.5â^'xAlxO4 (0 ≠x ≠0.4) Ferrite Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 396-401.	0.9	6
170	Rapid thermal annealing induced modification in structural and electronic structure properties of Ti0.95Co0.05O2⿿δthin films. Materials Research Bulletin, 2016, 83, 534-541.	5.2	6
171	Ferroelectric properties of Sm doped BaTiO3 bulk ceramics. AIP Conference Proceedings, 2020, , .	0.4	6
172	High dose gamma radiation exposure upon Kapton-H polymer for modifications of optical, free volume, structural and chemical properties. Optik, 2020, 205, 164244.	2.9	6
173	Band dispersion and optical gain calculations of staggered type GaAs0.4Sb0·6/In0.7Ga0.3As/GaAs0.4Sb0.6 nano-heterostructure under electric field and [100] strain. Superlattices and Microstructures, 2021, 150, 106694.	3.1	6
174	Structural, optical properties and the origin of spin functionality in the Co modified TiO2 nanoparticles. Vacuum, 2021, 183, 109870.	3.5	6
175	Structural, Optical, Electrical and Antibacterial Properties of Fe-Doped CeO2 Nanoparticles. Crystals, 2021, 11, 1594.	2.2	6
176	Mössbauer spectra of MnFe2â^'2x Al2x O4 (0≼x≼0.4) ferrites. Central South University, 2010, 17, 1129	9-ф1532.	5
177	Influence of Ti4+ doping on hyperfine field parameters of Mg0.95Mn0.05Fe2â^'2x Ti2x O4 (0⩽x⩽0.7). Ce South University, 2010, 17, 1139-1143.	ntral 0.5	5
178	STUDY OF STRUCTURAL AND MAGNETIC PROPERTIES OF Co -DOPED In₂O₃ NANOPARTICLES. International Journal of Nanoscience, 2011, 10, 961-965.	0.7	5
179	Magnetic, Optical and Structural Property Studies of Mn-Doped ZnO Nanosheets. Journal of Nanoscience and Nanotechnology, 2012, 12, 5464-5468.	0.9	5
180	Uniaxial ultra-high pressure dependent tuning of optical gain of W-shaped Type-II GaAsSb/InGaAs/InAlAs nano-heterostructure. Optik, 2020, 204, 164121.	2.9	5

#	Article	IF	Citations
181	Electrical and structural properties of La doped BiFeO3. AIP Conference Proceedings, 2020, , .	0.4	5
182	Improved and tunable optical absorption characteristics of MQW GaAs/AlGaAs nano-scale heterostructure. Optik, 2020, 208, 164544.	2.9	5
183	One-Pot Synthesis of 7, 7-Dimethyl-4-Phenyl-2-Thioxo-2,3,4,6,7, 8-Hexahydro-1H-Quinazoline-5-OnesUsing Zinc Ferrite Nanocatalyst and Its Bio Evaluation. Catalysts, 2021, 11, 431.	3.5	5
184	Photocatalytic Applications of Fe–Ag Co-Doped TiO2 Nanoparticles in Removal of Flumioxazin Pesticide Residues in Water. Frontiers in Nanotechnology, 2021, 3, .	4.8	5
185	Role of La substitution on structural, optical, and multiferroic properties of BiFeO3 nanoparticles. Applied Nanoscience (Switzerland), 0 , 1 .	3.1	5
186	Fine tunability of optical gain characteristics of InGaAs/GaAsSb/InAlAs nano-heterostructure under combined effect of field and temperature. Superlattices and Microstructures, 2021, 156, 106982.	3.1	5
187	Annealing Temperature Dependence of Various Properties of ZnO Nanoparticles Investigated with Soft XAS. Nano, 2021, 16, .	1.0	5
188	Influence of Fe and Cu Co-Doping on Structural, Magnetic and Electrochemical Properties of CeO2 Nanoparticles. Materials, 2022, 15, 4119.	2.9	5
189	Low-Temperature Ethanol Sensor via Defective Multiwalled Carbon Nanotubes. Materials, 2022, 15, 4439.	2.9	5
190	Influence of the thickness on structural, magnetic and electrical properties of La0.7Ca0.3MnO3 thin film. Current Applied Physics, 2010, 10, 821-824.	2.4	4
191	MAGNETIC AND ELECTRONIC STRUCTURE STUDIES OF Mn _{1+x} Fe _{2-2x} Ti _x O a‰ x a‰ 0.5) FERRITES. Functional Materials Letters, 2010, 03, 269-273.	ntak ≈ ub>4	ł <b ≰ub>
192	Study of Raman Spectrum of Fe Doped CeO ₂ Thin Films Grown by Pulsed Laser Deposition. Advanced Materials Research, 2010, 123-125, 375-378.	0.3	4
193	ELECTRICAL TRANSPORT PROPERTIES AND MAGNETORESISTANCE OF (La _{0.7} Ca _{0.3} MnO ₃) _{1-x COMPOSITES. Surface Review and Letters, 2010, 17, 33-38.}	/s ub >/(<fo< th=""><th>onto CuFe</th></fo<>	on t o CuFe
194	Effect of SnO2 addition on the magnetic, transport and magnetoresistance properties of La0.7(CaxSr1â€"x)0.3MnO3. Current Applied Physics, 2011, 11, S297-S300.	2.4	4
195	Structural and photoluminescence study of bulk SrZnO2. AIP Conference Proceedings, 2018, , .	0.4	4
196	Ferroelectric and dielectric properties of Mn doped BiFeO3 bulk ceramics. AIP Conference Proceedings, 2018, , .	0.4	4
197	Electronic structure and energy gaps evaluation of perovskite manganite single crystals using XES and XAS spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2021, 250, 147084.	1.7	4
198	Role of Bi-excess on structural, electrical, optical, and magnetic properties BiFeO3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 23968-23982.	2.2	4

#	Article	IF	CITATIONS
199	Ferrimagnetic Ordering of Ti ⁴⁺ Doped Mn _{1+<i>x</i>} Fe _{2â^2<i>x</i>} O ₄ (0 ≠ <i>x</i> ≠0.5) Ferrites at Room Temperature. Science of Advanced Materials, 2011, 3, 120-126.	0.7	4
200	Oxygen vacancy induced structural and domain size-controlled magnetic behavior of La0.67Ca0.33MnO3 perovskite. Journal of Materials Science: Materials in Electronics, 2022, 33, 6829-6841.	2.2	4
201	Ferromagnetism in Fe doped ZnO synthesized by co-precipitation method. Journal of the Ceramic Society of Japan, 2009, 117, 616-618.	1.1	3
202	Low temperature Raman study of PrCoO3 thin films on LaAlO3 (100) substrates grown by pulsed laser deposition. Central South University, 2010, 17, 1144-1147.	0.5	3
203	Structural, magnetic and surface morphological study of Ni doped SnO2 thin films. AIP Conference Proceedings, 2018, , .	0.4	3
204	Enhancement in the dielectric properties of Sm doped BaTiO3 bulk ceramics. AIP Conference Proceedings, 2018, , .	0.4	3
205	Effect of Fe Doping on Magnetic Behavior of SnO ₂ Nanoparticles for Spintronics Applications. IOP Conference Series: Materials Science and Engineering, 2019, 594, 012004.	0.6	3
206	Electronic structure and spontaneous magnetization in Mn-doped SnO2. Journal of Applied Physics, 2020, 128, 045705.	2.5	3
207	The synthesis, characterization and application of cobalt ferrite nanoparticles in lipstick. AIP Conference Proceedings, 2020, , .	0.4	3
208	Selection criteria for spintronic materials: Role of spin dependent band-width narrowing/broadening. Journal of Physics and Chemistry of Solids, 2021, 149, 109786.	4.0	3
209	Evidence of ZnCO3 interstitial phase in carbon implanted ZnO(002) thin films and room temperature ferromagnetism. Vacuum, 2021, 184, 109897.	3.5	3
210	Effect of 200ÂMeV Ag15+ ion irradiation on structural and magnetic properties of Mg0.95Mn0.05Fe2O4 ferrite thin film. Surface and Coatings Technology, 2009, 203, 2707-2711.	4.8	2
211	Engineering structural and magnetic properties of Mg0.95Mn0.05Fe2O4 thin films using 200 MeV Au ions. Journal of the Ceramic Society of Japan, 2009, 117, 685-688.	1.1	2
212	Study on structural, magnetic and transport properties of La0.7Ca0.3Mn1-xCoxO3 ($x = 0.01-0.05$) thin films. Journal of the Ceramic Society of Japan, 2009, 117, 612-615.	1.1	2
213	Structural, Dielectric, FTâ€iR and Complex Impedance Properties of Cobalt Ferrite Nanoparticles. , 2011, , .		2
214	Structural, magnetic and electronic structure properties of pure and Ti doped Mg0.95Mn0.05Fe2O4 nanocrystalline thin films. Ceramics International, 2013, 39, 1645-1650.	4.8	2
215	3D dendritic \hat{l}_{\pm} -Fe2O3 nano-architectures: Synthesis and its application on electrochemical non-enzymatic H2O2 sensing. AIP Conference Proceedings, 2015, , .	0.4	2
216	Non-enzymatic H2O2 sensing and photodetection study using Au-TiO2 nanocomposite. AIP Conference Proceedings, 2017, , .	0.4	2

#	Article	IF	CITATIONS
217	Nanometric MgFe2O4: Synthesis, characterization and its application towards supercapacitor and electrochemical uric acid sensor. AIP Conference Proceedings, 2017, , .	0.4	2
218	Electronic structure and magnetic properties of Ni-doped SnO2 thin films. AIP Conference Proceedings, $2018, \ldots$	0.4	2
219	Combustion synthesis and thermoluminescence response of near ultra-violet irradiated Mg2B2O5 nanophosphors. AIP Conference Proceedings, 2019, , .	0.4	2
220	First-Principles Investigation of Electronic Properties of GaAsxSb1 â€"x Ternary Alloys. Semiconductors, 2019, 53, 1731-1739.	0.5	2
221	Role of Mn doping in tailoring the magnetic properties of nanocrystalline SnO2 particles. Materials Today: Proceedings, 2020, 27, 227-230.	1.8	2
222	Understanding vibrant behavior of Si-circular diaphragm for low-pressure measurement. International Journal of Modern Physics B, 2020, 34, 2050174.	2.0	2
223	Experimental and DFT investigation of electronic structure and ferromagnetic stable state in pristine and Mn: SnO2 NPs. Vacuum, 2020, 179, 109536.	3.5	2
224	Investigating the magnetocrystalline anisotropy and the exchange bias through interface effects of nanocrystalline FeCo. Journal of the Korean Physical Society, 0, , .	0.7	2
225	RIXS, XES and XAS studies for electronic structure of rare earth and alkaline earth modified manganite. Physica B: Condensed Matter, 2022, 628, 413562.	2.7	2
226	Effect of Mn Concentration on the Structural, Ferroelectric, Optical, and Magnetic Properties of BiFeO3 Nanoparticles. Crystals, 2022, 12, 704.	2.2	2
227	Effect of Cobalt on the Structure, Electrical, and Magnetic Properties of $\frac{Co}{m \times Co}_{m $	0 27.8 4314	FrgBT/Overl
228	Effect of NiFe2O4 doping on the structure, magnetic properties and electrical properties of La0.7Ca0.3MnO3. Metals and Materials International, 2010, 16, 807-811.	3.4	1
229	Structural, Dielectric, Microstructural Properties of Ni[sub 0.7]Zn[sub 0.3]Fe[sub 2â^'x]Al[sub x]O[sub 4] Ferrite Nanoparticles Through Citrate-Gel Method., 2011,,.		1
230	Investigation of electrical properties of Ni-Mg ferrite nano particles using impedance spectroscopy. , 2012, , .		1
231	175 MeV Au[sup \pm 13] ion irradiation induced structural and morphological modifications in zinc oxide thin films. AIP Conference Proceedings, 2013, , .	0.4	1
232	Photon Upconversion in 3D Dendritic α-Fe 2 O 3. Materials Today: Proceedings, 2017, 4, 5620-5624.	1.8	1
233	Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles. AIP Conference Proceedings, 2018, , .	0.4	1
234	First principle study of electronic properties of Fe-doped SnO2 nanoparticles. AIP Conference Proceedings, 2019, , .	0.4	1

#	Article	IF	CITATIONS
235	Investigation of optical properties of PVA-GO nanocomposites. AIP Conference Proceedings, 2020, , .	0.4	1
236	Experimental and Numerical Investigation of Fracture Parameters for Side Edge Notch Bend Specimen of Al 6063-T6. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2021, 45, 133-151.	1.3	1
237	Structural, Dielectric and Magnetic Properties of Nano-Crystalline Ni-Mg Ferrites Prepared by Citrate-Gel Auto Combustion Method. Springer Proceedings in Physics, 2013, , 215-224.	0.2	1
238	Electrical Transport and Magnetoresistance Properties of (1-x)La0.7Ca0.3MnO3/xZnO Composites. Journal of the Korean Physical Society, 2010, 57, 1077-1080.	0.7	1
239	Influence of high energy (MeV) Au9+ ion irradiation for modification of properties in scaffold-assisted electro synthesized PbSe nanowires. Inorganic Chemistry Communication, 2022, 135, 109093.	3.9	1
240	Electronic Structure, Photoluminescence and Thermoluminescence Studies of Cu-Doped Mg2B2O5 Nanophosphors. Journal of Electronic Materials, 2022, 51, 1922-1932.	2.2	1
241	Enhanced Li+ Ionic Conduction and Relaxation Properties of Li5+2xLa3Ta2-xGaxO12 Garnets. Crystals, 2022, 12, 770.	2.2	1
242	Ceramic Ti/TiO2/AuNP Film with 1-D Nanostructures for Selfstanding Supercapacitor Electrodes. Crystals, 2022, 12, 791.	2.2	1
243	Multiferroic Properties of Bi-Substituted Co[sub 2]MnO[sub 4]. AIP Conference Proceedings, 2008, , .	0.4	0
244	Influence of CoO Phase on Structural, Magnetic and Electrical Properties of La _{0.7} Ca _{0.3} MnO ₃ and La _{0.7} Sr _{0.3} MnO ₃ . Advanced Materials Research, 2010, 123-125, 125-128.	0.3	O
245	Structural and Mossbauer Studies of Fe Doped ZnO Nanocrystals. , 2011, , .		O
246	STUDY OF SPRAY DRIED DOPED ZINC OXIDE NANOPOWDER FOR VARISTOR APPLICATION. International Journal of Nanoscience, 2011, 10, 1029-1033.	0.7	0
247	Thermoluminescence Characteristics of Nanocrystalline LiF Phosphors Synthesized at Different pH Values. , $2011, \ldots$		0
248	Structural, dielectric and Mossbauer studies of sol-gel synthesized nano Ni-Cu-Zn ferrites., 2013,,.		0
249	Effect of Co2+ substitution in Mg0.5Zn0.5â°'xCoxFe2O4 ferrite nanoparticles: Study of structural, dielectric and magnetic properties., 2014,,.		0
250	Exchange bias field in mixed arrangement of NiO-Ni nanoparticles. AIP Conference Proceedings, 2016, , .	0.4	0
251	Photoluminescence emission and excitation spectroscopy of Bi doped SrS nanophosphors. AIP Conference Proceedings, 2018, , .	0.4	0
252	Structural and magnetic properties of Fe doped CeO2 thin films. AIP Conference Proceedings, 2018, , .	0.4	0

#	Article	IF	CITATIONS
253	Structural and Mössbauer analysis of pure and Ce-Dy doped cobalt ferrite nanoparticles. AIP Conference Proceedings, 2018, , .	0.4	O
254	Synthesis and characterization of GO coupled SrS material with a study of luminescence properties. AlP Conference Proceedings, 2019, , .	0.4	0
255	Structural and optical properties of Cu doped CeO2 nanoparticles. AIP Conference Proceedings, 2019, ,	0.4	0
256	Role of Fe (Transition Metal) in Tuning the Optical Behavior of SnO2 Nanoparticles. , 2020, , .		0
257	Structural and optical properties of Cu codoped Fe-CeO2 nanoparticles. AIP Conference Proceedings, 2020, , .	0.4	0
258	X-ray diffraction and UV-visible spectroscopy study of Fe-Cu co-doped CeO2. AIP Conference Proceedings, 2020, , .	0.4	0
259	Effect of dopant on electronic structure of nanocrystalline CeO2. AIP Conference Proceedings, 2020,	0.4	0
260	A comparative study on fracture parameters of friction stir welded AA5083 using NCORR. AIP Conference Proceedings, 2021, , .	0.4	0
261	Effect of Temperature on Fracture Parameters of Aluminum Alloy Al 6061: A Numerical Study. Annales De Chimie: Science Des Materiaux, 2019, 43, 115-118.	0.4	0
262	Magnetic Nanostructures Immobilized Microorganisms for the Development of Nano-Biofertilizers. Journal of Nanoelectronics and Optoelectronics, 2020, 15, 1530-1537.	0.5	0
263	Analytical Study of Graphene as a Novel Piezoresistive Material for MEMS Pressure Sensor Application. Journal of Nano- and Electronic Physics, 2020, 12, 02001-1-02001-4.	0.5	0
264	Explore the charge transfer and d-d excitation in perovskite manganite using 2p3d resonant inelastic X-ray scattering. Journal of Alloys and Compounds, 2022, 904, 164020.	5 . 5	0