
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4226658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneously Dual Modification of Niâ€Rich Layered Oxide Cathode for Highâ€Energy Lithiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1808825.	14.9	430
2	A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO ₂ -inlaid LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ as a high-performance cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 894-904.	10.3	286
3	Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochimica Acta, 2015, 169, 202-209.	5.2	149
4	Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 30879-30889.	8.0	131
5	Non-aqueous dual-carbon lithium-ion capacitors: a review. Journal of Materials Chemistry A, 2019, 7, 15541-15563.	10.3	118
6	B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. Journal of Energy Chemistry, 2022, 71, 588-594.	12.9	106
7	Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. Journal of Alloys and Compounds, 2012, 520, 190-194.	5.5	103
8	The impact of vanadium substitution on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2. Electrochimica Acta, 2014, 135, 77-85.	5.2	98
9	Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries. Journal of Power Sources, 2018, 406, 110-117.	7.8	90
10	Mitigating capacity fade by constructing highly ordered mesoporous Al ₂ O ₃ /polyacene double-shelled architecture in Li-rich cathode materials. Journal of Materials Chemistry A, 2015, 3, 13933-13945.	10.3	80
11	Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries. Applied Catalysis B: Environmental, 2020, 265, 118603.	20.2	79
12	A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. Powder Technology, 2011, 206, 353-357.	4.2	75
13	Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide. Journal of Power Sources, 2015, 281, 444-454.	7.8	73
14	Synthesis, structural and electrochemical properties of LiNi0.79Co0.1Mn0.1Cr0.01O2 via fast co-precipitation. Journal of Alloys and Compounds, 2010, 507, 172-177.	5.5	69
15	Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technology, 2011, 214, 279-282.	4.2	69
16	Effect of pre-roasting on leaching of laterite. Hydrometallurgy, 2009, 99, 84-88.	4.3	63
17	High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties. Electrochimica Acta, 2015, 174, 446-455.	5.2	62
18	Stable cycle-life properties of Ti-doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method. Journal of Physics and Chemistry of Solids, 2009, 70, 238-242.	4.0	60

#	Article	IF	CITATIONS
19	Effect of Controlled-Atmosphere Storage and Ethanol Rinsing on NaNi _{0.5} Mn _{0.5} O ₂ for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38246-38254.	8.0	58
20	Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8â°'xCo0.1Mn0.1CrxO2. Electrochimica Acta, 2012, 77, 89-96.	5.2	57
21	Solid-state synthesis of lanthanum-based oxides Co-coated LiNi0.5Co0.2Mn0.3O2 for advanced lithium ion batteries. Journal of Alloys and Compounds, 2020, 832, 154959.	5.5	57
22	Role of Residual Li and Oxygen Vacancies in Ni-rich Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 42554-42563.	8.0	56
23	Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. Journal of the American Chemical Society, 2019, 141, 10644-10653.	13.7	52
24	Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method. Journal of Alloys and Compounds, 2015, 638, 77-82.	5.5	51
25	The Effects of Reversibility of H2-H3 Phase Transition on Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 500.	3.6	51
26	Co9S8 confined in bifunctional N/S co-doped carbon/carbon with high electrochemical performance for lithium-ion batteries. Applied Surface Science, 2019, 489, 528-537.	6.1	50
27	Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber. Journal of Power Sources, 2020, 449, 227514.	7.8	50
28	In situ construction of interconnected SnO2/nitrogen-doped Carbon@TiO2 networks for lithium-ion half/full cells. Electrochimica Acta, 2018, 290, 312-321.	5.2	49
29	Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials. ACS Applied Materials & Interfaces, 2017, 9, 30617-30625.	8.0	42
30	Modification research of LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion battery. Ionics, 2018, 24, 91-98.	2.4	42
31	Controllable construction of interconnected SnO /N-doped carbon/carbon composite for enhanced-performance lithium-ion batteries anodes. Journal of Alloys and Compounds, 2019, 778, 731-740.	5.5	39
32	High Performance and Structural Stability of K and Cl Co-Doped LiNi0.5Co0.2Mn0.3O2 Cathode Materials in 4.6 Voltage. Frontiers in Chemistry, 2018, 6, 643.	3.6	38
33	Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: Understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics. Electrochimica Acta, 2013, 109, 262-268.	5.2	37
34	Recent Advances and New Perspectives in Capillary Electrophoresis-Mass Spectrometry for Single Cell "Omics― Molecules, 2019, 24, 42.	3.8	36
35	Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries. Applied Surface Science, 2020, 531, 147245.	6.1	36
36	Oxygen-induced lithiophilicity of tin-based framework toward highly stable lithium metal anode. Chemical Engineering Journal, 2020, 394, 124848.	12.7	36

#	Article	IF	CITATIONS
37	In-situ tailored 3D Li2O@Cu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency. Journal of Power Sources, 2020, 463, 228178.	7.8	33
38	Effect of Al substitution sites on Li 1â^'x Al x (Ni 0.5 Co 0.2 Mn 0.3) 1â^'y Al y O 2 cathode materials for lithium ion batteries. Journal of Alloys and Compounds, 2016, 686, 30-37.	5.5	31
39	Preparation of synthetic rutile and metal-doped LiFePO4 from ilmenite. Powder Technology, 2010, 199, 293-297.	4.2	29
40	Simultaneous synthesis and synergetic stabilization of Zr-doped and Li6Zr2O7-coated Ni-rich layered cathode for advanced lithium ion batteries. Electrochimica Acta, 2020, 364, 137120.	5.2	28
41	Effects of chelating agents on electrochemical properties of Na0.9Ni0.45Mn0.55O2 cathode materials. Journal of Alloys and Compounds, 2021, 855, 157485.	5.5	28
42	Electrochemical properties of self-assembled porous micro-spherical LiFePO4/PAS composite prepared by spray-drying method. Electrochimica Acta, 2015, 186, 117-124.	5.2	26
43	Bimetalâ€organic Frameworkâ€derived Co ₉ S ₈ /ZnS@NC Heterostructures for Superior Lithiumâ€ion Storage. Chemistry - an Asian Journal, 2020, 15, 1613-1620.	3.3	24
44	Molten salt synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode materials. Synthetic Metals, 2014, 187, 123-129.	3.9	23
45	Structural analysis of layered Li2MnO3–LiMO2 (M=Ni1/3Mn1/3Co1/3, Ni1/2Mn1/2) cathode materials by Rietveld refinement and first-principles calculations. Ceramics International, 2016, 42, 8537-8544.	4.8	23
46	Effect of Different Composition on Voltage Attenuation of Li-Rich Cathode Material for Lithium-Ion Batteries. Materials, 2020, 13, 40.	2.9	23
47	Effects of lithium-active manganese trioxide coating on the structural and electrochemical characteristics of LiNi0.5Co0.2Mn0.3O2 as cathode materials for lithium ion battery. Journal of Alloys and Compounds, 2015, 650, 684-691.	5.5	22
48	Ti-substituted O3-type layered oxide cathode material with high-voltage stability for sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 622, 1037-1044.	9.4	22
49	A novel process for producing synthetic rutile and LiFePO4 cathode material from ilmenite. Journal of Alloys and Compounds, 2010, 506, 271-278.	5.5	21
50	High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties. Materials, 2020, 13, 334.	2.9	20
51	One-step synthesis of ZnO/N-doped carbon/Cu composites for high-performance lithium ion batteries anodes. Synthetic Metals, 2017, 226, 39-45.	3.9	19
52	Synthesis of Yolk–Shell-Structured Si@C Nanocomposite Anode Material for Lithium-Ion Battery. Journal of Electronic Materials, 2018, 47, 6311-6318.	2.2	19
53	Multi-component syntheses of diverse 5-fluoroalkyl-1,2,3-triazoles facilitated by air oxidation and copper catalysis. Green Chemistry, 2019, 21, 3407-3412.	9.0	18
54	Cation-substituted LiFePO4 prepared from the FeSO4·7H2O waste slag as a potential Li battery cathode material. Journal of Alloys and Compounds, 2010, 497, 278-284.	5.5	17

#	Article	IF	CITATIONS
55	Synthesis of cation-substituted LiNi0.8Co0.1Mn0.1O2 from laterite. lonics, 2013, 19, 1215-1222.	2.4	16
56	Characterization of Na-substituted LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion battery. Ionics, 2014, 20, 629-634.	2.4	16
57	Effect of Zr doping and Li2O-2B2O3 layer on the structural electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material: experiments and first-principle calculations. Ionics, 2019, 25, 2017-2026.	2.4	16
58	An integrated high-throughput strategy enables the discovery of multifunctional ionic liquids for sustainable chemical processes. Green Chemistry, 2019, 21, 307-313.	9.0	16
59	Cleaner enzymatic production of biodiesel with easy separation procedures triggered by a biocompatible hydrophilic ionic liquid. Green Chemistry, 2020, 22, 1944-1951.	9.0	16
60	Evaluation of Collagen Alterations in Early Precursor Lesions of High Grade Serous Ovarian Cancer by Second Harmonic Generation Microscopy and Mass Spectrometry. Cancers, 2021, 13, 2794.	3.7	15
61	Effects of Trimetaphosphate on Abiotic Formation and Hydrolysis of Peptides. Life, 2017, 7, 50.	2.4	14
62	Study on the thermal stability of Ga-doped ZnO thin film: A transparent conductive layer for dye-sensitized TiO2 nanoparticles based solar cells. Materials Science in Semiconductor Processing, 2014, 26, 276-281.	4.0	13
63	Porous Hollow Superlattice NiMn2O4/NiCo2O4 Mesocrystals as a Highly Reversible Anode Material for Lithium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 153.	3.6	12
64	Ce-modified LiNi0.5Co0.2Mn0.3O2 cathode with enhanced surface and structural stability for Li ion batteries. Advanced Powder Technology, 2021, 32, 2493-2501.	4.1	12
65	Bimetallic MOF-derived CoSe2 embedded within N-doped carbon with enhanced lithium storage properties. Solid State Ionics, 2021, 370, 115747.	2.7	12
66	Cobalt phthalocyanine derived bifunctional carbon decorated CoSe with enhanced lithium storage capability. Synthetic Metals, 2020, 269, 116554.	3.9	9
67	Estimation of temperature distribution of LiFePO4 lithium ion battery during charge–discharge process. Ionics, 2016, 22, 1517-1525.	2.4	8
68	An efficient and easily-accessible ligand for Cu(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition bioconjugation. Chemical Communications, 2020, 56, 14401-14403.	4.1	8
69	Review of Recent Advances in Lipid Analysis of Biological Samples via Ambient Ionization Mass Spectrometry. Metabolites, 2021, 11, 781.	2.9	8
70	Improved Electrochemical Performance of Surface Coated LiNi0.80Co0.15Al0.05O2 With Polypyrrole. Frontiers in Chemistry, 2018, 6, 648.	3.6	7
71	Engineering red phosphorus confined in TiO2-coated ultrathin carbon-bubble foam with enhanced Li+ storage capability. Applied Surface Science, 2020, 529, 147114.	6.1	7
72	Access to Photostability-Enhanced Unnatural Base Pairs via Local Structural Modifications. ACS Synthetic Biology, 2022, 11, 334-342.	3.8	7

#	Article	IF	CITATIONS
73	Medium Rings Bearing Bitriazolyls: Easily Accessible Structures with Superior Performance as Cu Catalyst Ligands. Journal of Organic Chemistry, 2018, 83, 13166-13177.	3.2	6
74	Enhanced pseudocapacitive behaviors of Sb-based anodes for lithium ion batteries via dual modification approach of Fe doping combined with double carbon coatings. Journal of Alloys and Compounds, 2021, 889, 161658.	5.5	6
75	Copper-catalyzed <i>in situ</i> oxidative-coupling for one-pot synthesis of 5-aryl-1,4-disubstituted 1,2,3-triazoles under mild conditions. RSC Advances, 2021, 11, 38108-38114.	3.6	6
76	Thermo-electrochemical study on cathode materials for lithium ion cells. Journal of Solid State Electrochemistry, 2015, 19, 2167-2175.	2.5	5