
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4226420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6448-6452.	3.3	1,164
2	RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research, 2012, 52, 7-29.	0.4	1,084
3	Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society, 2007, 88, 1395-1410.	1.7	847
4	Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls?. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13626-13633.	3.3	443
5	Global air quality and climate. Chemical Society Reviews, 2012, 41, 6663.	18.7	428
6	Land surface coupling in regional climate simulations of the West African monsoon. Climate Dynamics, 2009, 33, 869-892.	1.7	195
7	Temperature and Recent Trends in the Chemistry of Continental Surface Ozone. Chemical Reviews, 2015, 115, 3898-3918.	23.0	176
8	A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations. Bulletin of the American Meteorological Society, 2009, 90, 1843-1864.	1.7	175
9	Influence of future climate and emissions on regional air quality in California. Journal of Geophysical Research, 2006, 111, .	3.3	160
10	The complex chemical effects of COVID-19 shutdowns on air quality. Nature Chemistry, 2020, 12, 777-779.	6.6	154
11	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	12.2	153
12	Observed suppression of ozone formation at extremely high temperatures due to chemical and biophysical feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19685-19690.	3.3	133
13	Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agricultural and Forest Meteorology, 2015, 201, 98-110.	1.9	114
14	Sensitivity of Lake-Effect Snowfall to Lake Ice Cover and Temperature in the Great Lakes Region. Monthly Weather Review, 2013, 141, 670-689.	0.5	95
15	Pollen as atmospheric cloud condensation nuclei. Geophysical Research Letters, 2015, 42, 3596-3602.	1.5	89
16	Dry Deposition of Ozone Over Land: Processes, Measurement, and Modeling. Reviews of Geophysics, 2020, 58, e2019RG000670.	9.0	86
17	Projected Future Changes in Vegetation in Western North America in the Twenty-First Century. Journal of Climate, 2013, 26, 3671-3687.	1.2	81
18	In-canopy gas-phase chemistry during CABINEX 2009: sensitivity of a 1-D canopy model to vertical mixing and isoprene chemistry. Atmospheric Chemistry and Physics, 2012, 12, 8829-8849	1.9	78

#	Article	IF	CITATIONS
19	Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nature Communications, 2022, 13, 1234.	5.8	75
20	The role of soil ice in land-atmosphere coupling over the United States: A soil moisture–precipitation winter feedback mechanism. Journal of Geophysical Research, 2011, 116, .	3.3	66
21	VOC reactivity in central California: comparing an air quality model to ground-based measurements. Atmospheric Chemistry and Physics, 2008, 8, 351-368.	1.9	61
22	FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere–atmosphere chemical exchange. Geoscientific Model Development, 2015, 8, 3765-3784.	1.3	60
23	Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geoscientific Model Development, 2012, 5, 741-760.	1.3	57
24	The Regional Climate Change Hyperâ€Matrix Framework. Eos, 2008, 89, 445-446.	0.1	53
25	The coupling of the Common Land Model (CLM0) to a regional climate model (RegCM). Theoretical and Applied Climatology, 2005, 82, 225-243.	1.3	50
26	Observed Impact of Atmospheric Aerosols on the Surface Energy Budget. Earth Interactions, 2013, 17, 1-22.	0.7	45
27	Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign. Atmospheric Chemistry and Physics, 2011, 11, 11921-11936.	1.9	43
28	Climate Change and Nutrient Loading in the Western Lake Erie Basin: Warming Can Counteract a Wetter Future. Environmental Science & Technology, 2019, 53, 7543-7550.	4.6	42
29	Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration. Tellus, Series B: Chemical and Physical Meteorology, 2022, 57, 404.	0.8	41
30	Past and present-day biogenic volatile organic compound emissions in East Asia. Atmospheric Environment, 2002, 36, 4895-4905.	1.9	39
31	Pollen Rupture and Its Impact on Precipitation in Clean Continental Conditions. Geophysical Research Letters, 2018, 45, 7156-7164.	1.5	37
32	Biogenic 2â€methylâ€3â€butenâ€2â€ol increases regional ozone and HO _x sources. Geophysical Research Letters, 2007, 34, .	1.5	33
33	A proposed physical mechanism for ozone-meteorology correlations using land–atmosphere coupling regimes. Atmospheric Environment, 2013, 72, 50-59.	1.9	31
34	Regional modeling of surfaceâ€atmosphere interactions and their impact on Great Lakes hydroclimate. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1044-1064.	1.2	30
35	Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest. Atmospheric Chemistry and Physics, 2012, 12, 10125-10143.	1.9	29
36	Quantifying the contribution of environmental factors to isoprene flux interannual variability. Atmospheric Environment, 2012, 54, 216-224.	1.9	25

#	Article	IF	CITATIONS
37	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	0.7	24
38	Projected precipitation changes within the Great Lakes and Western Lake Erie Basin: a multiâ€model analysis of intensity and seasonality. International Journal of Climatology, 2017, 37, 4864-4879.	1.5	24
39	Ecological forecasting under climatic data uncertainty: a case study in phenological modeling. Environmental Research Letters, 2010, 5, 044014.	2.2	22
40	The ozone-climate penalty in the Midwestern U.S Atmospheric Environment, 2017, 170, 130-142.	1.9	22
41	Evaluation of nitrous acid sources and sinks in urban outflow. Atmospheric Environment, 2016, 127, 272-282.	1.9	21
42	Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 404-411.	0.8	21
43	The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bulletin of the American Meteorological Society, 2020, 101, E1743-E1760.	1.7	21
44	Methodological Approaches to Projecting the Hydrologic Impacts of Climate Change*. Earth Interactions, 2013, 17, 1-19.	0.7	19
45	A prognostic pollen emissions model for climate models (PECM1.0). Geoscientific Model Development, 2017, 10, 4105-4127.	1.3	19
46	Bias correction of climate model outputs influences watershed model nutrient load predictions. Science of the Total Environment, 2021, 759, 143039.	3.9	19
47	Effects of Urban Plume Aerosols on a Mesoscale Convective System. Journals of the Atmospheric Sciences, 2016, 73, 4641-4660.	0.6	18
48	Long-Term, High-Resolution Survey of Atmospheric Aerosols over Egypt with NASA's MODIS Data. Remote Sensing, 2017, 9, 1027.	1.8	18
49	Role of the Terrestrial Biosphere in Atmospheric Chemistry and Climate. Accounts of Chemical Research, 2020, 53, 1260-1268.	7.6	18
50	Using satelliteâ€derived optical thickness to assess the influence of clouds on terrestrial carbon uptake. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1747-1761.	1.3	17
51	Largeâ€eddy simulation of biogenic VOC chemistry during the DISCOVERâ€AQ 2011 campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8083-8105.	1.2	17
52	Impact of dust size parameterizations on aerosol burden and radiative forcing in RegCM4. Atmospheric Chemistry and Physics, 2017, 17, 769-791.	1.9	17
53	Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan. Atmospheric Environment, 2015, 120, 217-226.	1.9	15
54	Daily Cropland Soil NO _x Emissions Identified by TROPOMI and SMAP. Geophysical Research Letters, 2020, 47, e2020GL089949.	1.5	15

#	Article	IF	CITATIONS
55	Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region. Climate Research, 2014, 59, 207-228.	0.4	14
56	The Earth Science Women's Network (ESWN): Community-Driven Mentoring for Women in the Atmospheric Sciences. Bulletin of the American Meteorological Society, 2016, 97, 345-354.	1.7	13
57	Impact of Inâ€Cloud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,131.	1.2	13
58	Sensitivity to climate change of land use and management patterns optimized for efficient mitigation of nutrient pollution. Climatic Change, 2018, 147, 647-662.	1.7	13
59	Simulated changes in biogenic VOC emissions and ozone formation from habitat expansion of <i>Acer Rubrum</i> (red maple). Environmental Research Letters, 2014, 9, 014006.	2.2	12
60	The Influence of Aerosol Hygroscopicity on Precipitation Intensity During a Mesoscale Convective Event. Journal of Geophysical Research D: Atmospheres, 2018, 123, 424-442.	1.2	12
61	Comparing turbulent mixing of atmospheric oxidants across model scales. Atmospheric Environment, 2019, 199, 88-101.	1.9	12
62	Quantifying uncertainty cascading from climate, watershed, and lake models in harmful algal bloom predictions. Science of the Total Environment, 2021, 759, 143487.	3.9	11
63	Sea Surface Temperature Warming Patterns and Future Vegetation Change. Journal of Climate, 2015, 28, 7943-7961.	1.2	10
64	Study of aerosol direct and indirect effects and auto-conversion processes over the West African monsoon region using a regional climate model. Advances in Atmospheric Sciences, 2018, 35, 182-194.	1.9	10
65	Influence of Vertical Heterogeneities in the Canopy Microenvironment on Interannual Variability of Carbon Uptake in Temperate Deciduous Forests. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005658.	1.3	10
66	Interactions between Air Pollution and Terrestrial Ecosystems: Perspectives on Challenges and Future Directions. Bulletin of the American Meteorological Society, 2021, 102, E525-E538.	1.7	10
67	Role of the Atmospheric Moisture Budget in Defining the Precipitation Seasonality of the Great Lakes Region. Journal of Climate, 2021, 34, 643-657.	1.2	9
68	Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model. Atmospheric Chemistry and Physics, 2016, 16, 15461-15484.	1.9	7
69	Atmo-ecometabolomics: a novel atmospheric particle chemical characterization methodology for ecological research. Environmental Monitoring and Assessment, 2019, 191, 78.	1.3	7
70	Drivers of the fungal spore bioaerosol budget: observational analysis and global modeling. Atmospheric Chemistry and Physics, 2021, 21, 4381-4401.	1.9	7
71	Can Land Surface Models Capture the Observed Soil Moisture Control of Water and Carbon Fluxes in Temperateâ€Toâ€Boreal Forests?. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005999.	1.3	7
72	Deciphering the Source of Primary Biological Aerosol Particles: A Pollen Case Study. ACS Earth and Space Chemistry, 2021, 5, 969-979.	1.2	6

#	Article	IF	CITATIONS
73	An exploration of the aerosol indirect effects in East Asia using a regional climate model. Atmosfera, 2020, 33, 87-103.	0.3	6
74	Analysis of the Atmospheric Water Cycle for the Laurentian Great Lakes Region Using CMIP6 Models. Journal of Climate, 2021, 34, 4693-4710.	1.2	5
75	Investigation of Isoprene Dynamics During the Dayâ€ŧoâ€Night Transition Period. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032784.	1.2	4
76	FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site. Geoscientific Model Development, 2021, 14, 6309-6329.	1.3	4
77	Effect of emissions inventory versus climate model resolution on radiative forcing and precipitation over the continental United States. Journal of Geophysical Research, 2012, 117, .	3.3	3
78	Author contributions can be clarified. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8155-8155.	1.2	3
79	The Global Influence of Cloud Optical Thickness on Terrestrial Carbon Uptake. Earth Interactions, 2019, 23, 1-22.	0.7	3
80	Lake Spray Aerosol Emissions Alter Nitrogen Partitioning in the Great Lakes Region. Geophysical Research Letters, 2021, 48, e2021GL093727.	1.5	3
81	Estimation of Possible Primary Biological Particle Emissions and Rupture Events at the Southern Great Plains ARM Site. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034679.	1.2	3
82	The Effects of Lake Representation on the Regional Hydroclimate in the ECMWF Reanalyses. Monthly Weather Review, 2021, , .	0.5	2
83	High resolution modeling of Quercus pollen with an Eulerian modeling system: A case study in Greece. Atmospheric Environment, 2022, 268, 118816.	1.9	2
84	Short-term exposures to atmospheric evergreen, deciduous, grass, and ragweed aeroallergens and the risk of suicide in Ohio, 2007–2015: Exploring disparities by age, gender, and education level. Environmental Research, 2021, 200, 111450.	3.7	1
85	Lag associations of four types of pollens with respiratory mortality in Michigan 2006-2021. ISEE Conference Abstracts, 2021, 2021, .	0.0	Ο
86	Simulated Dust Over the Sahara and Mediterranean with a Regional Climate Model (RegCM4). Springer Atmospheric Sciences, 2017, , 615-620.	0.4	0
87	Transport-driven aerosol differences above and below the canopy of a mixed deciduous forest. Atmospheric Chemistry and Physics, 2021, 21, 17031-17050.	1.9	Ο