Bernard Boitrel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4226281/publications.pdf

Version: 2024-02-01

68 papers 1,365

331670
21
h-index

395702 33 g-index

74 all docs

74 docs citations

times ranked

74

973 citing authors

#	Article	IF	CITATIONS
1	Secondâ€6phere Biomimetic Multipoint Hydrogenâ€Bonding Patterns to Boost CO ₂ Reduction of Iron Porphyrins. Angewandte Chemie - International Edition, 2019, 58, 4504-4509.	13.8	117
2	Porphyrin complexes of the period 6 main group and late transition metals. Dalton Transactions, 2011, 40, 6591.	3.3	71
3	Aza-Crown-Capped Porphyrin Models of Myoglobin:  Studies of the Steric Interactions of Gas Binding. Journal of the American Chemical Society, 1997, 119, 3481-3489.	13.7	66
4	Local ionic liquid environment at a modified iron porphyrin catalyst enhances the electrocatalytic performance of CO ₂ to CO reduction in water. Chemical Communications, 2018, 54, 11630-11633.	4.1	61
5	Designing â€Totem' <i>C₂</i> â€Symmetrical Iron Porphyrin Catalysts for Stereoselective Cyclopropanations. Chemistry - A European Journal, 2016, 22, 13599-13612.	3.3	48
6	Iron Porphyrins as Models of Cytochromec Oxidase. Chemistry - A European Journal, 2001, 7, 3291-3297.	3. 3	47
7	Electrocatalytic reduction of dioxygen to water by tren-capped porphyrins, functional models of cytochrome c oxidaseâ€. Chemical Communications, 1999, , 1523-1524.	4.1	43
8	Bismuth and Lead Hanging-Carboxylate Porphyrins: An Unexpected Homobimetallic Lead(II) Complex. Angewandte Chemie - International Edition, 2007, 46, 5120-5124.	13.8	40
9	Application of 3-Quinolinoyl Picket Porphyrins to the Electroreduction of Dioxygen to Water: Mimicking the Active Site of Cytochromec Oxidase. ChemBioChem, 2001, 2, 144-148.	2.6	37
10	Bismuth porphyrin complexes: syntheses and structural studies. Dalton Transactions, 2003, , 1803-1807.	3. 3	35
11	Highly diastereoselective cyclopropanation of α-methylstyrene catalysed by a C ₂ -symmetrical chiral iron porphyrin complex. Chemical Communications, 2014, 50, 1811-1813.	4.1	35
12	Secondâ€Sphere Biomimetic Multipoint Hydrogenâ€Bonding Patterns to Boost CO ₂ Reduction of Iron Porphyrins. Angewandte Chemie, 2019, 131, 4552-4557.	2.0	32
13	Synthesis and X-ray characterization of a new bis-crown ether porphyrin. Tetrahedron Letters, 2000, 41, 8289-8292.	1.4	27
14	Structural characterisation of the first mononuclear bismuth porphyrin. Chemical Communications, 2003, , 2670.	4.1	27
15	Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
16	Hexaphyrin–Cyclodextrin Hybrids: A Nest for Switchable Aromaticity, Asymmetric Confinement, and Isomorphic Fluxionality. Angewandte Chemie - International Edition, 2016, 55, 297-301.	13.8	26
17	Tren-Capped Hexaphyrin Zinc Complexes: Interplaying Molecular Recognition, Möbius Aromaticity, and Chirality. Journal of the American Chemical Society, 2017, 139, 13847-13857.	13.7	26
18	Formation of a Dinuclear Mercury(II) Complex with a Regular Bisâ€Strapped Porphyrin Following a Tunable Cooperative Process. Angewandte Chemie - International Edition, 2011, 50, 1560-1564.	13.8	25

#	Article	IF	CITATIONS
19	Heterobimetallic Porphyrin Complexes Displaying Triple Dynamics: Coupled Metal Motions Controlled by Constitutional Evolution. Journal of the American Chemical Society, 2014, 136, 6698-6715.	13.7	24
20	Substituted tren-capped porphyrins: probing the influence of copper in synthetic models of cytochrome c oxidase. Organic and Biomolecular Chemistry, 2003, 1, 1274-1276.	2.8	23
21	Synthesis and crystal structure of an unprecedented bismuth porphyrin containing ester pendant arms. Chemical Communications, 2000, , 1589-1590.	4.1	22
22	Metal Migration Processes in Homo- and Heterobimetallic Bismuth(III)–Lead(II) Porphyrin Complexes: Emergence of Allosteric Newton's Cradle-like Devices. Journal of the American Chemical Society, 2012, 134, 16017-16032.	13.7	22
23	Orchestrating Communications in a Three-Type Chirality Totem: Remote Control of the Chiroptical Response of a Möbius Aromatic System. Journal of the American Chemical Society, 2019, 141, 11583-11593.	13.7	21
24	l-Prolinoyl chiral picket iron porphyrins evaluated for the enantioselective epoxidation of alkenes. New Journal of Chemistry, 2003, 27, 942-947.	2.8	20
25	Translocation-coupled transmetalation at the origin of a dinuclear lead porphyrin complex: implication of a hanging-atop coordination mode. Chemical Communications, 2012, 48, 3724.	4.1	20
26	Characterization and Crystal Structure of a Chiral Ruffled Basket-Handle Porphyrin. Inorganic Chemistry, 1998, 37, 6532-6534.	4.0	19
27	Acid-Base-Controlled Stereoselective Metalation of Overhanging Carboxylic Acid Porphyrins: Consequences for the Formation of Heterobimetallic Complexes. Chemistry - A European Journal, 2013, 19, 11021-11038.	3.3	19
28	O2and CO Binding to Tetraaza-Tripodal-Capped Iron(II) Porphyrins. Inorganic Chemistry, 2006, 45, 1338-1348.	4.0	18
29	Binding of O2 and CO to heme protein models. Tetrahedron Letters, 1993, 34, 7267-7270.	1.4	17
30	Structural and Coordination Studies of "Pearl Oysterlike―Porphyrins. Inorganic Chemistry, 2007, 46, 6338-6346.	4.0	16
31	Coordination Studies of Bis-Strapped-Hanging-Carboxylate Porphyrins. X-ray Characterization of a Five-Coordinate Iron(II) Complex with a Built-in Axial Base. Inorganic Chemistry, 2010, 49, 3098-3100.	4.0	16
32	Characterization of a Six-Coordinate Ferrous High-Spin Heme with Both Intramolecular Axial Carboxylic Acid and Pyridine. Journal of the American Chemical Society, 2010, 132, 10652-10653.	13.7	16
33	Synthesis and Characterization of a New Series of Potential Hemoprotein Analogues: "Arbor― Porphyrins. Journal of Organic Chemistry, 1998, 63, 1312-1314.	3.2	15
34	Investigation of the Enantioselectivity Observed in Epoxidation Reactions Catalysed by Bis-Strapped Chiral Porphyrins Derived fromL-Proline. European Journal of Inorganic Chemistry, 2002, 2002, 1666-1672.	2.0	15
35	The overhanging carboxylic acid strategy: an alternative route to the porphyrin core expansion/modification for the coordination of large metal ions. Journal of Porphyrins and Phthalocyanines, 2012, 16, 537-544.	0.8	13
36	Synergic effect on oxygen reduction reaction of strapped iron porphyrins polymerized around carbon nanotubes. New Journal of Chemistry, 2018, 42, 19749-19754.	2.8	13

#	Article	IF	Citations
37	Functionalization of Porphyrins: Mechanistic Insights, Conformational Studies, and Structural Characterizations. European Journal of Organic Chemistry, 2006, 2006, 1207-1215.	2.4	12
38	Unprecedented incorporation of \hat{l}_{\pm} -emitter radioisotope 213Bi into porphyrin chelates with reference to a daughter isotope mediated assistance mechanism. Chemical Communications, 2011, 47, 8554.	4.1	12
39	Formation and Dynamic Behavior of Mono―and Bimetallic Cadmium(II) Porphyrin Complexes: Allosteric Control of Coupled Intraligand Metal Migrations. Chemistry - A European Journal, 2013, 19, 13376-13386.	3.3	12
40	Sunlightâ€Driven Formation and Dissociation of a Dynamic Mixedâ€Valence Thallium(III)/Thallium(I) Porphyrin Complex. Angewandte Chemie - International Edition, 2015, 54, 3806-3811.	13.8	12
41	Second-sphere hydrogen-bonding enhances heterogeneous electrocatalytic CO ₂ to CO reduction by iron porphyrins in water. Green Chemistry, 2021, 23, 8979-8987.	9.0	12
42	DFT Conformational Studies of Chiral Bis-Binaphthyl Porphyrins and Their Metal Complexes Employed as Cyclopropanation Catalysts. Organometallics, 2014, 33, 6081-6088.	2.3	11
43	Protonated hexaphyrin–cyclodextrin hybrids: molecular recognition tuned by a kinetic-to-thermodynamic topological adaptation. Chemical Communications, 2016, 52, 9347-9350.	4.1	11
44	Synthesis, characterisation and catalytic use of iron porphyrin amino ester conjugates. New Journal of Chemistry, 2017, 41, 5950-5959.	2.8	11
45	Proline-Modified Porphyrin Catalysts for Enantioselective Epoxidations: Design, Synthesis, and Reactivity. Helvetica Chimica Acta, 2004, 87, 2447-2464.	1.6	10
46	Cyclodextrinâ€Sandwiched Hexaphyrin Hybrids: Sideâ€toâ€Side Cavity Coupling Switched by a Temperature― and Redoxâ€Responsive Central Device. Chemistry - A European Journal, 2018, 24, 5804-5812.	3.3	10
47	Compartmentalized vs. non-compartmentalized translocations in metal porphyrin complexes. New Journal of Chemistry, 2016, 40, 5650-5655.	2.8	9
48	Iron-Strapped Porphyrins with Carboxylic Acid Groups Hanging over the Coordination Site: Synthesis, X-ray Characterization, and Dioxygen Binding. Inorganic Chemistry, 2017, 56, 7373-7383.	4.0	9
49	Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	2.0	9
50	Spontaneous Tl(<scp>i</scp>)-to-Tl(<scp>iii</scp>) oxidation in dynamic heterobimetallic Hg(<scp>ii</scp>)/Tl(<scp>i</scp>) porphyrin complexes. Chemical Communications, 2016, 52, 517-520.	4.1	8
51	High affinity of â€~arbor' iron porphyrins for dioxygen. New Journal of Chemistry, 1998, 22, 1331-1332.	2.8	7
52	A Versatile and Convenient Method for the Functionalization of Porphyrins. European Journal of Organic Chemistry, 2001, 2001, 1927-1926.	2.4	6
53	Functionalization of porphyrins: towards the synthesis of bifunctional chelates for bismuth coordination. Journal of Porphyrins and Phthalocyanines, 2010, 14, 412-420.	0.8	6
54	Oxygen reduction reaction catalyzed by overhanging carboxylic acid strapped iron porphyrins adsorbed on carbon nanotubes. Journal of Porphyrins and Phthalocyanines, 2020, 24, 675-684.	0.8	6

#	Article	IF	CITATIONS
55	Möbius Zn ^{ll} â€Hexaphyrins Bearing a Chiral Coordinating Arm: A Chiroptical Switch Featuring P/M Twist Inversion Controlled by Achiral Effectors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
56	Structurally characterized bimetallic porphyrin complexes of Pb, Bi, Hg and Tl based on unusual coordination modes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 117-133.	0.8	5
57	Acid–base controlled multiple conformation and aromaticity switches in tren-capped hexaphyrins. Organic and Biomolecular Chemistry, 2019, 17, 3718-3722.	2.8	5
58	Match–mismatch effects in two-fold transfer of chirality within a Möbius metallo-receptor. Chemical Communications, 2020, 56, 9166-9169.	4.1	5
59	Stabilization of synthetic heme-superoxo complexes by hydrogen bonding: a still on-going quest. New Journal of Chemistry, 2018, 42, 7516-7521.	2.8	4
60	Functional Myoglobin Model Composed of a Strapped Porphyrin/Cyclodextrin Supramolecular Complex with an Overhanging COOH That Increases O ₂ /CO Binding Selectivity in Aqueous Solution. Inorganic Chemistry, 2021, 60, 12392-12404.	4.0	4
61	Adaptable Overhanging Carboxylic Acid Porphyrins: Towards Molecular Assemblies through Unusual Coordination Modes. European Journal of Inorganic Chemistry, 2019, 2019, 3005-3014.	2.0	3
62	Hg ^{II} â€Mediated Tl ^I â€toâ€Tl ^{III} Oxidation in Dynamic Pb ^{II} /Tl Porphyrin Complexes. Chemistry - A European Journal, 2019, 25, 845-853.	3.3	3
63	Interconversion between Möbius chiroptical states sustained by hexaphyrin dynamic coordination. Chemical Communications, 2021, 57, 3559-3562.	4.1	3
64	Möbius Zn ^{II} â€Hexaphyrins Bearing a Chiral Coordinating Arm: A Chiroptical Switch Featuring P/M Twist Inversion Controlled by Achiral Effectors. Angewandte Chemie, 2022, 134, .	2.0	1
65	Frontispiece: Secondâ€Sphere Biomimetic Multipoint Hydrogenâ€Bonding Patterns to Boost CO ₂ Reduction of Iron Porphyrins. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
66	Frontispiz: Second‧phere Biomimetic Multipoint Hydrogenâ€Bonding Patterns to Boost CO ₂ Reduction of Iron Porphyrins. Angewandte Chemie, 2019, 131, .	2.0	0
67	Stereoselective formation of bismuth complexes by transmetalation of lead with adaptable overhanging carboxylic acid 5,10-strapped porphyrins. Comptes Rendus Chimie, 2021, 24, 13-26.	0.5	0
68	Titelbild: Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction (Angew. Chem. 14/2022). Angewandte Chemie, 2022, 134, .	2.0	0