Suzanne L Dickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4226112/publications.pdf

Version: 2024-02-01

36303 39675 9,235 117 51 94 citations g-index h-index papers 129 129 129 8269 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acute sleep loss alters circulating fibroblast growth factor 21 levels in humans: A randomised crossover trial. Journal of Sleep Research, 2022, 31, e13472.	3.2	6
2	TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice. International Journal of Molecular Sciences, 2022, 23, 559.	4.1	3
3	Ghrelin's effects on growth hormone release: to pulse or not to pulse?. Nature Reviews Endocrinology, 2022, 18, 457-457.	9.6	1
4	Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding. Journal of Physiology, 2021, 599, 709-724.	2.9	20
5	Identification of Novel Neurocircuitry Through Which Leptin Targets Multiple Inputs to the Dopamine System to Reduce Food Reward Seeking. Biological Psychiatry, 2021, 90, 843-852.	1.3	20
6	Functional and Neurochemical Identification of Ghrelin Receptor (GHSR)-Expressing Cells of the Lateral Parabrachial Nucleus in Mice. Frontiers in Neuroscience, 2021, 15, 633018.	2.8	8
7	A Body Weight Sensor Regulates Prepubertal Growth via the Somatotropic Axis in Male Rats. Endocrinology, 2021, 162, .	2.8	3
8	Rewarding behavior with a sweet food strengthens its valuation. PLoS ONE, 2021, 16, e0242461.	2.5	1
9	The gravitostat protects dietâ€induced obese rats against fat accumulation and weight gain. Journal of Neuroendocrinology, 2021, 33, e12997.	2.6	6
10	A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs?. Journal of Neuroendocrinology, 2021, 33, e13025.	2.6	2
11	The Orexigenic Force of Olfactory Palatable Food Cues in Rats. Nutrients, 2021, 13, 3101.	4.1	10
12	Genetic deletion of the ghrelin receptor (GHSR) impairs growth and blunts endocrine response to fasting in Ghsr-IRES-Cre mice. Molecular Metabolism, 2021, 51, 101223.	6.5	10
13	Manifesto for an ECNP Neuromodulation Thematic Working Group (TWG): Non-invasive brain stimulation as a new Super-subspecialty. European Neuropsychopharmacology, 2021, 52, 72-83.	0.7	3
14	Neuroscience of obesity. Neuroscience, 2020, 447, 1-2.	2.3	3
15	Does physical activity associated with chronic food restriction alleviate anxiety like behaviour, in female mice?. Hormones and Behavior, 2020, 124, 104807.	2.1	7
16	Ghrelin Receptor Stimulation of the Lateral Parabrachial Nucleus in Rats Increases Food Intake but not Food Motivation. Obesity, 2020, 28, 1503-1511.	3.0	11
17	Ghrelin Induces Place Preference for Social Interaction in the Larger Peer of a Male Rat Pair. Neuroscience, 2020, 447, 148-154.	2.3	9
18	The additive effect of allopregnanolone on ghrelin's orexigenic effect in rats. Neuropeptides, 2019, 76, 101937.	2.2	7

#	Article	IF	CITATIONS
19	Rats that are predisposed to excessive obesity show reduced (leptinâ€induced) thermoregulation even in the preobese state. Physiological Reports, 2019, 7, e14102.	1.7	4
20	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332.	0.7	191
21	Divergent Metabolic Effects of Acute Versus Chronic Repeated Forced Swim Stress in the Rat. Obesity, 2019, 27, 427-433.	3.0	9
22	Impact of Freeâ€Choice Diets High in Fat and Different Sugars on Metabolic Outcome and Anxietyâ€Like Behavior in Rats. Obesity, 2019, 27, 409-419.	3.0	14
23	Activation of the rat hypothalamic supramammillary nucleus by food anticipation, food restriction or ghrelin administration. Journal of Neuroendocrinology, 2019, 31, e12676.	2.6	18
24	Ghrelin's effects on food motivation in rats are not limited to palatable foods. Journal of Neuroendocrinology, 2019, 31, e12665.	2.6	16
25	Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews, 2018, 19, 435-451.	6.5	77
26	Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 427-432.	7.1	74
27	The association of serum leptin levels with food addiction is moderated by weight status in adolescent psychiatric inpatients. European Eating Disorders Review, 2018, 26, 618-628.	4.1	14
28	Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Science Advances, 2018, 4, eaar8590.	10.3	86
29	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	6.5	3
30	Acute ghrelin changes food preference from a highâ€fat diet to chow during bingeâ€like eating in rodents. Journal of Neuroendocrinology, 2017, 29, .	2.6	29
31	Genetic predisposition to obesity affects behavioural traits including food reward and anxiety-like behaviour in rats. Behavioural Brain Research, 2017, 328, 95-104.	2.2	14
32	The determinants of food choice. Proceedings of the Nutrition Society, 2017, 76, 316-327.	1.0	218
33	Central administration of ghrelin induces conditioned avoidance in rodents. European Neuropsychopharmacology, 2017, 27, 809-815.	0.7	15
34	Vagal Blocking for Obesity Control: a Possible Mechanism-Of-Action. Obesity Surgery, 2017, 27, 177-185.	2.1	26
35	Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Scientific Reports, 2016, 6, 23673.	3.3	62
36	Modulation of the sleep–wake cycle by changes in energy balance. Lancet, The, 2016, 387, S28.	13.7	0

#	Article	IF	CITATIONS
37	Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 2016, 9, 71-77.	3.9	129
38	Behavioral consequences of exposure to a high fat diet during the post-weaning period in rats. Hormones and Behavior, 2016, 85, 56-66.	2.1	23
39	Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans. Psychoneuroendocrinology, 2016, 74, 258-268.	2.7	43
40	GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology, 2016, 110, 396-406.	4.1	60
41	The Sleep/Wake Cycle is Directly Modulated by Changes in Energy Balance. Sleep, 2016, 39, 1691-1700.	1.1	19
42	The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior. Neuropsychopharmacology, 2016, 41, 1199-1209.	5.4	69
43	Centrally Administered Ghrelin Acutely Influences Food Choice in Rodents. PLoS ONE, 2016, 11, e0149456.	2.5	48
44	Short Sleep Makes Declarative Memories Vulnerable to Stress in Humans. Sleep, 2015, 38, 1861-1868.	1.1	13
45	Goals in Nutrition Science 2015–2020. Frontiers in Nutrition, 2015, 2, 26.	3.7	31
46	Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1255-E1261.	3.6	132
47	Ghrelin Signalling on Food Reward: A Salient Link Between the Gut and the Mesolimbic System. Journal of Neuroendocrinology, 2015, 27, 424-434.	2.6	120
48	"Eating addictionâ€; rather than "food addictionâ€; better captures addictive-like eating behavior. Neuroscience and Biobehavioral Reviews, 2014, 47, 295-306.	6.1	430
49	GLP-1 Receptor Stimulation of the Lateral Parabrachial Nucleus Reduces Food Intake: Neuroanatomical, Electrophysiological, and Behavioral Evidence. Endocrinology, 2014, 155, 4356-4367.	2.8	71
50	Influence of ghrelin on the central serotonergic signaling system in mice. Neuropharmacology, 2014, 79, 498-505.	4.1	53
51	Effects of smoking cessation on \hat{l}^2 -cell function, insulin sensitivity, body weight, and appetite. European Journal of Endocrinology, 2014, 170, 219-227.	3.7	67
52	Divergent circuitry underlying food reward and intake effects of ghrelin: Dopaminergic VTA-accumbens projection mediates ghrelin's effect on food reward but not food intake. Neuropharmacology, 2013, 73, 274-283.	4.1	108
53	393 Role of the Vagus Nerve in the Gut-Brain Axis Revealed by Stimulation and Blockade of the Gastric Vagus Nerve. Gastroenterology, 2013, 144, S-76.	1.3	0
54	Acute sleep deprivation increases portion size and affects food choice in young men. Psychoneuroendocrinology, 2013, 38, 1668-1674.	2.7	99

#	Article	IF	CITATIONS
55	A possible association between panic disorder and a polymorphism in the preproghrelingene. Psychiatry Research, 2013, 206, 22-25.	3.3	22
56	Enteroendocrine hormones â€" central effects on behavior. Current Opinion in Pharmacology, 2013, 13, 977-982.	3.5	58
57	Hypothalamic $\hat{\mathbb{P}}$ -Opioid Receptor Modulates the Orexigenic Effect of Ghrelin. Neuropsychopharmacology, 2013, 38, 1296-1307.	5.4	40
58	Ghrelin, Reward and Motivation. Endocrine Development, 2013, 25, 101-111.	1.3	42
59	Ghrelin: Central and Peripheral Implications in Anorexia Nervosa. Frontiers in Endocrinology, 2013, 4, 15.	3.5	54
60	Acute sleep deprivation increases food purchasing in men. Obesity, 2013, 21, E555-60.	3.0	52
61	Gut Peptide GLP-1 and Its Analogue, Exendin-4, Decrease Alcohol Intake and Reward. PLoS ONE, 2013, 8, e61965.	2.5	121
62	The Glucagon-Like Peptide 1 (GLP-1) Analogue, Exendin-4, Decreases the Rewarding Value of Food: A New Role for Mesolimbic GLP-1 Receptors. Journal of Neuroscience, 2012, 32, 4812-4820.	3.6	305
63	Ghrelin Interacts with Neuropeptide Y Y1 and Opioid Receptors to Increase Food Reward. Endocrinology, 2012, 153, 1194-1205.	2.8	96
64	Neural Substrates Underlying Interactions between Appetite Stress and Reward. Obesity Facts, 2012, 5, 208-220.	3.4	12
65	Ghrelin Mediates Anticipation to a Palatable Meal in Rats. Obesity, 2012, 20, 963-971.	3.0	71
66	Peripheral Signals Modifying Food Reward. Handbook of Experimental Pharmacology, 2012, , 131-158.	1.8	7
67	Role of Ghrelin in the Pathophysiology of Eating Disorders. CNS Drugs, 2012, 26, 281-296.	5.9	20
68	Ghrelin Antagonism: A Potential Therapeutic Target for Addictive Behaviour Disorders., 2012,, 181-197.		0
69	Heparanase Affects Food Intake and Regulates Energy Balance in Mice. PLoS ONE, 2012, 7, e34313.	2.5	26
70	The Amygdala as a Neurobiological Target for Ghrelin in Rats: Neuroanatomical, Electrophysiological and Behavioral Evidence. PLoS ONE, 2012, 7, e46321.	2.5	133
71	Role of ghrelin in food reward: impact of ghrelin on sucrose selfâ€administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addiction Biology, 2012, 17, 95-107.	2.6	212
72	Ghrelin Influences Novelty Seeking Behavior in Rodents and Men. PLoS ONE, 2012, 7, e50409.	2.5	37

#	Article	IF	CITATIONS
73	The role of the central ghrelin system in reward from food and chemical drugs. Molecular and Cellular Endocrinology, 2011, 340, 80-87.	3.2	206
74	Ghrelin and food reward: The story of potential underlying substrates. Peptides, 2011, 32, 2265-2273.	2.4	100
75	Central administration of ghrelin alters emotional responses in rats: behavioural, electrophysiological and molecular evidence. Neuroscience, 2011, 180, 201-211.	2.3	94
76	Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience, 2011, 180, 129-137.	2.3	289
77	Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. European Neuropsychopharmacology, 2011, 21, 384-392.	0.7	101
78	Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addiction Biology, 2011, 16, 82-91.	2.6	86
79	Gastrectomy alters emotional reactivity in rats: neurobiological mechanisms. European Journal of Neuroscience, 2011, 33, 1685-1695.	2.6	4
80	Hedonic and incentive signals for body weight control. Reviews in Endocrine and Metabolic Disorders, 2011, 12, 141-151.	5.7	145
81	The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol, 2011, 45, 341-347.	1.7	84
82	Genetic Association and Gene Expression Analysis Identify <i>FGFR1</i> as a New Susceptibility Gene for Human Obesity. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E962-E966.	3.6	25
83	Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology, 2010, 211, 415-422.	3.1	189
84	PRECLINICAL STUDY: FULL ARTICLE: Ghrelin increases intake of rewarding food in rodents. Addiction Biology, 2010, 15, 304-311.	2.6	292
85	Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents. Neuroscience, 2010, 171, 1180-1186.	2.3	73
86	Requirement of central ghrelin signaling for alcohol reward. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11318-11323.	7.1	359
87	Central NMU signaling in body weight and energy balance regulation: evidence from NMUR2 deletion and chronic central NMU treatment in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E708-E716.	3.5	23
88	Anorexigenic and electrophysiological actions of novel ghrelin receptor (GHS-R1A) antagonists in rats. European Journal of Pharmacology, 2009, 612, 167-173.	3.5	65
89	Interleukinâ€6 Gene Knockout Influences Energy Balance Regulating Peptides in the Hypothalamic Paraventricular and Supraoptic Nuclei. Journal of Neuroendocrinology, 2009, 21, 620-628.	2.6	64
90	On the Central Mechanism Underlying Ghrelin's Chronic Proâ€Obesity Effects in Rats: New Insights from Studies Exploiting a Potent Ghrelin Receptor Antagonist. Journal of Neuroendocrinology, 2009, 21, 777-785.	2.6	43

#	Article	IF	Citations
91	Hypothalamic gene expression following ghrelin therapy to gastrectomized rodents. Regulatory Peptides, 2008, 146, 176-182.	1.9	16
92	Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors are involved in mediating the ghrelin-induced locomotor stimulation and dopamine overflow in nucleus accumbens. European Neuropsychopharmacology, 2008, 18, 508-518.	0.7	70
93	Feeding Behavior in Rats Subjected to Gastrectomy or Gastric Bypass Surgery. European Surgical Research, 2008, 40, 279-288.	1.3	35
94	PRECLINICAL STUDY: Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addiction Biology, 2007, 12, 6-16.	2.6	369
95	Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E317-E325.	3.5	92
96	PRECLINICAL STUDY: Ghrelin stimulates locomotor activity and accumbal dopamineâ€overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addiction Biology, 2006, 11, 45-54.	2.6	322
97	Central administration of resistin promotes short-term satiety in rats. European Journal of Endocrinology, 2005, 153, R1-R5.	3.7	93
98	Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neuroscience Letters, 2003, 353, 1-4.	2.1	136
99	The Rat Arcuate Nucleus Integrates Peripheral Signals Provided by Leptin, Insulin, and a Ghrelin Mimetic. Diabetes, 2002, 51, 3412-3419.	0.6	113
100	Neuroendocrinogy Briefings. Journal of Neuroendocrinology, 2002, 14, 83-84.	2.6	12
101	Interleukin-6-deficient mice develop mature-onset obesity. Nature Medicine, 2002, 8, 75-79.	30.7	1,073
102	Growth Hormone (GH)-Independent Stimulation of Adiposity by GH Secretagogues. Biochemical and Biophysical Research Communications, 2001, 280, 132-138.	2.1	73
103	Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat. Neuroscience Letters, 2001, 313, 145-148.	2.1	81
104	Effects of Growth Hormone and Its Secretagogues on Bone. Endocrine, 2001, 14, 063-066.	2.2	20
105	Chronic Central Infusion of Growth Hormone Secretagogues: Effects on Fos Expression and Peptide Gene Expression in the Rat Arcuate Nucleus. Neuroendocrinology, 1999, 70, 83-92.	2.5	33
106	Activation of Arcuate Nucleus Neurons by Systemic Administration of Leptin and Growth Hormone-Releasing Peptide-6 in Normal and Fasted Rats. Neuroendocrinology, 1999, 70, 93-100.	2.5	44
107	Neuroendocrine Control of Growth Hormone Secretion. Growth Hormone, 1999, , 3-15.	0.2	0
108	Hypothalamic Site and Mechanism of Action of Growth Hormone Secretagogues., 1999,, 79-89.		0

#	Article	IF	CITATIONS
109	Induction of c-fos Messenger Ribonucleic Acid in Neuropeptide Y and Growth Hormone (GH)-Releasing Factor Neurons in the Rat Arcuate Nucleus Following Systemic Injection of the GH Secretagogue, GH-Releasing Peptide-6*. Endocrinology, 1997, 138, 771-777.	2.8	277
110	Attenuation of the Growth Hormone Secretagogue Induction of Fos Protein in the Rat Arcuate Nucleus by Central Somatostatin Action. Neuroendocrinology, 1997, 66, 188-194.	2.5	43
111	Induction of c-fos Messenger Ribonucleic Acid in Neuropeptide Y and Growth Hormone (GH)-Releasing Factor Neurons in the Rat Arcuate Nucleus Following Systemic Injection of the GH Secretagogue, GH-Releasing Peptide-6. Endocrinology, 1997, 138, 771-777.	2.8	97
112	Mechanism of Action of GHRP-6 and Nonpeptidyl Growth Hormone Secretagogues., 1996,, 147-163.		14
113	Evidence for a Central Site and Mechanism of Action of Growth Hormone Releasing Peptide (GHRP-6)., 1996,, 237-251.		2
114	Central Actions of Peptide and Non-Peptide Growth Hormone Secretagogues in the Rat. Neuroendocrinology, 1995, 61, 36-43.	2.5	113
115	Electrical Stimulation of the Rat Periventricular Nucleus Influences the Activity of Hypothalamic Arcuate Neurones. Journal of Neuroendocrinology, 1994, 6, 359-367.	2.6	21
116	Growth hormone release evoked by electrical stimulation of the arcuate nucleus in anesthetized male rats. Brain Research, 1993, 623, 95-100.	2.2	10
117	Ghrelin, a gut-brain signal of importance for food reward. Endocrine Abstracts, 0, , 1-1.	0.0	0