Xiao-Qin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4226037/publications.pdf

Version: 2024-02-01

		759233	996975
15	353	12	15
papers	citations	h-index	g-index
15	15	15	473
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Baseâ€Catalyzed Formal [3+2] Cycloaddition of Diazooxindoles with Oxazolâ€5â€(4 <i>H</i>)â€ones. European Journal of Organic Chemistry, 2018, 2018, 341-346.	2.4	4
2	Facile access to novel 1,2,4-oxadiazinan-5-ones via $[3 + 3]$ cycloaddition of in situ generated azaoxyallyl cations with nitrones. RSC Advances, 2017, 7, 12916-12922.	3.6	36
3	Construction of 2,3,4,5-tetrahydro-1,2,4-triazines via $[4+2]$ cycloaddition of $\hat{l}\pm$ -halogeno hydrazones to imines. RSC Advances, 2017, 7, 9264-9271.	3.6	11
4	[3+2] Cycloaddition of Oxazol-5- $(4H)$ -ones with Nitrones for Diastereoselective Synthesis of Isoxazolidin-5-ones. Organic Letters, 2017, 19, 26-29.	4.6	14
5	1,3-Dipolar [3 \pm 3] cycloaddition of $\hat{l}\pm$ -halohydroxamate-based azaoxyallyl cations with hydrazonoyl chloride-derived nitrile imines. RSC Advances, 2017, 7, 55106-55109.	3.6	20
6	Direct access to non-aromatic 1,2,3,6-tetrahydro-1,2,3,4-tetrazines via $[4+2]$ cycloaddition of $\hat{1}$ ±-halogeno hydrazones with azodicarboxylic acid derivatives. RSC Advances, 2016, 6, 25562-25567.	3.6	20
7	Organocatalytic [3+2] Cycloadditions of Barbiturateâ€Based Olefins with 3â€Isothiocyanato Oxindoles: Highly Diastereoselective and Enantioselective Synthesis of Dispirobarbiturates. Advanced Synthesis and Catalysis, 2016, 358, 2619-2630.	4.3	44
8	Diastereoselective synthesis of highly functionalized polycyclic benzosultams via tandem cyclisations of cyclic N-sulfonylimines with in situ generated Huisgen 1,4-dipoles. RSC Advances, 2016, 6, 61732-61739.	3.6	8
9	Construction of 2,3,4,7â€Tetrahydroâ€1,2,4,5â€oxatriazepines via [4+3] Cycloadditions of αâ€Halogeno Hydrazones with Nitrones. Advanced Synthesis and Catalysis, 2016, 358, 1826-1832.	4.3	32
10	Diastereoselective 1,3-Dipolar Cycloadditions of <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> ,Ci>N,Ci <n< i="">,Ci>N,Ci<n< i="">,Ci<n< i<="" td=""><td>4.6</td><td>35</td></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<>	4.6	35
11	Facile construction of novel imidazolidine-spirooxindoles via diastereoselective cycloaddition of N-acylhydrazine-derived imines with 3-isothiocyanato oxindoles. RSC Advances, 2016, 6, 27690-27695.	3.6	12
12	Diastereo―and Enantioselective Synthesis of Chiral Pyrrolidineâ€Fused Spirooxindoles <i>via</i> Organocatalytic [3+2] 1,3â€Dipolar Cycloaddition of Azomethine Ylides with Maleimides. Advanced Synthesis and Catalysis, 2015, 357, 2492-2502.	4.3	50
13	Highly Enantioselective Synthesis of Chiral Pyranonaphthoquinoneâ€Fused Spirooxindoles through Organocatalytic Threeâ€Component Cascade Reactions. European Journal of Organic Chemistry, 2015, 2015, 3320-3326.	2.4	26
14	Diastereoselective Synthesis of Dispirobarbiturates through Et3N-Catalyzed [3 + 2] Cycloaddition of Barbiturate-Based Olefins with 3-Isothiocyanato Oxindoles. Journal of Organic Chemistry, 2015, 80, 10380-10385.	3.2	29
15	Highly diastereoselective synthesis of imidazolidine-dispirooxindoles via three-component [3 + 2] cycloadditions of isatins, 2-(aminomethyl)pyridine and isatin-based imines. RSC Advances, 2015, 5, 103116-103122.	3.6	12