
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4225866/publications.pdf Version: 2024-02-01

PVIICO TERO

#	Article	IF	CITATIONS
1	Substrate-induced electrostatic potential varies composition of supported lipid bilayer containing anionic lipid. Japanese Journal of Applied Physics, 2022, 61, SC1026.	0.8	2
2	Quenching Efficiency of Quantum Dots Conjugated to Lipid Bilayers on Graphene Oxide Evaluated by Fluorescence Single Particle Tracking. Applied Sciences (Switzerland), 2022, 12, 3733.	1.3	4
3	Capability of Polyunsaturated Phosphatidylcholine for Non-raft Domain Formation in Cholesterol-containing Lipid Bilayers. E-Journal of Surface Science and Nanotechnology, 2022, , .	0.1	Ο
4	Physical Properties and Reactivity of Microdomains in Phosphatidylinositol-Containing Supported Lipid Bilayer. Membranes, 2021, 11, 339.	1.4	5
5	Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183626.	1.4	8
6	Non-raft Submicron Domain Formation in Cholesterol-containing Lipid Bilayers Induced by Polyunsaturated Phosphatidylethanolamine. Colloids and Surfaces B: Biointerfaces, 2021, 210, 112235.	2.5	8
7	Stimulations inducing tethered lipid bilayer formation on proteinâ€modified substrate. Electronics and Communications in Japan, 2020, 103, 36-42.	0.3	1
8	Establishment of a cell-free translation system from rice callus extracts. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2028-2036.	0.6	5
9	Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. Chemical Record, 2020, 20, 730-742.	2.9	22
10	Stimulations Inducing Tethered Lipid Bilayer Formation on Protein-Modified Substrate. IEEJ Transactions on Electronics, Information and Systems, 2020, 140, 447-451.	0.1	0
11	Lipid bilayer formation on an ion image sensor and measurement of time response of potential dependency on ion concentration. Japanese Journal of Applied Physics, 2019, 58, SDDK06.	0.8	3
12	Proteoliposome fusion to artificial lipid bilayer promoted by domains of polyunsaturated phosphatidylethanolamine. Japanese Journal of Applied Physics, 2019, 58, SIIB13.	0.8	3
13	Preparation of tethered-type supported lipid bilayer using water-soluble silane coupling agent. Japanese Journal of Applied Physics, 2019, 58, SIID05.	0.8	6
14	Formation of supported lipid bilayers of Escherichia coli extracted lipids and their surface morphologies. Japanese Journal of Applied Physics, 2019, 58, SIIB19.	0.8	6
15	Amphiphobic Septa Enhance the Mechanical Stability of Free-Standing Bilayer Lipid Membranes. Langmuir, 2018, 34, 5615-5622.	1.6	16
16	Supported Lipid Bilayers of Escherichia coli Extracted Lipids and Their Calcium Dependence. Frontiers in Materials, 2018, 5, .	1.2	8
17	Morphology and Physical Properties of Hydrophilic-Polymer-Modified Lipids in Supported Lipid Bilayers. Langmuir, 2018, 34, 7201-7209.	1.6	17
18	Substrate-Induced Structure and Molecular Dynamics in a Lipid Bilayer Membrane. Langmuir, 2017, 33, 14748-14755.	1.6	22

#	Article	IF	CITATIONS
19	Phase transition process in DDAB supported lipid bilayer. Journal of Crystal Growth, 2017, 468, 88-92.	0.7	1
20	Formation of Cell Membrane Component Domains in Artificial Lipid Bilayer. Scientific Reports, 2017, 7, 17905.	1.6	30
21	Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria. Scientific Reports, 2016, 6, 21867.	1.6	67
22	Reduction in lateral lipid mobility of lipid bilayer membrane by atmospheric pressure plasma irradiation. Japanese Journal of Applied Physics, 2016, 55, 03DF05.	0.8	24
23	Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species. Archives of Biochemistry and Biophysics, 2016, 605, 26-33.	1.4	38
24	Lateral Diffusion and Molecular Interaction in a Bilayer Membrane Consisting of Partially Fluorinated Phospholipids. Langmuir, 2016, 32, 10712-10718.	1.6	13
25	Septin Interferes with the Temperature-Dependent Domain Formation and Disappearance of Lipid Bilayer Membranes. Langmuir, 2016, 32, 12823-12832.	1.6	13
26	Effect of magnesium ion concentration on two-dimensional structure of DNA-functionalized nanoparticles on supported lipid bilayer. Japanese Journal of Applied Physics, 2016, 55, 03DF11.	0.8	8
27	Imaging Characterization of Cluster-Induced Morphological Changes of a Model Cell Membrane. Journal of Physical Chemistry C, 2016, 120, 15640-15647.	1.5	18
28	Enhancement of Electricity Production by Graphene Oxide in Soil Microbial Fuel Cells and Plant Microbial Fuel Cells. Frontiers in Bioengineering and Biotechnology, 2015, 3, 42.	2.0	64
29	Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma–liquid interface. Japanese Journal of Applied Physics, 2015, 54, 01AF03.	0.8	10
30	Origin of 1/ <i>f</i> noise in graphene produced for largeâ€scale applications in electronics. IET Circuits, Devices and Systems, 2015, 9, 52-58.	0.9	9
31	Fluidity evaluation of cell membrane model formed on graphene oxide with single particle tracking using quantum dot. Japanese Journal of Applied Physics, 2015, 54, 04DL09.	0.8	5
32	Formation and fluidity measurement of supported lipid bilayer on polyvinyl chloride membrane. AIP Conference Proceedings, 2014, , .	0.3	4
33	Electroformation from patterned single-layered supported lipid bilayers for formation of giant vesicles with narrow size distribution. Applied Physics Express, 2014, 7, 117001.	1.1	2
34	Plasma irradiation of artificial cell membrane system at solid–liquid interface. Applied Physics Express, 2014, 7, 077001.	1.1	31
35	Forming two-dimensional structure of DNA-functionalized Au nanoparticles via lipid diffusion in supported lipid bilayers. Journal of Crystal Growth, 2014, 401, 494-498.	0.7	11
36	Ecofriendly Route for the Synthesis of Highly Conductive Graphene Using Extremophiles for Green Electronics and Bioscience. Particle and Particle Systems Characterization, 2013, 30, 573-578.	1.2	26

#	Article	IF	CITATIONS
37	Characterization of graphene oxide reduced through chemical and biological processes. Journal of Physics: Conference Series, 2013, 433, 012001.	0.3	22
38	Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers. Materials, 2012, 5, 2658-2680.	1.3	121
39	Fabrication of Supported Lipid Bilayer on Graphene Oxide. Journal of Physics: Conference Series, 2012, 352, 012017.	0.3	25
40	Extracellular Matrix Patterning for Cell Alignment by Atmospheric Pressure Plasma Jets. Japanese Journal of Applied Physics, 2012, 51, 036201.	0.8	4
41	Reduced Graphene Oxide as the Support for Lipid Bilayer Membrane. Journal of Physics: Conference Series, 2012, 352, 012016.	0.3	19
42	Microorganism mediated synthesis of reduced graphene oxide films. Journal of Physics: Conference Series, 2012, 352, 012011.	0.3	17
43	Reviews in Plasmonics 2010. International Journal of Behavioral and Consultation Therapy, 2012, , .	0.4	13
44	Fabrication and Application of Plasmonic Silver Nanosheet. International Journal of Behavioral and Consultation Therapy, 2012, , 139-157.	0.4	1
45	Supported Lipid Membranes as Reaction Fields. Seibutsu Butsuri, 2012, 52, 283-286.	0.0	0
46	Extracellular Matrix Patterning for Cell Alignment by Atmospheric Pressure Plasma Jets. Japanese Journal of Applied Physics, 2012, 51, 036201.	0.8	3
47	Construction and Structural Analysis of Tethered Lipid Bilayer Containing Photosynthetic Antenna Proteins for Functional Analysis. Biomacromolecules, 2011, 12, 2850-2858.	2.6	37
48	Anomalous Diffusion in Supported Lipid Bilayers Induced by Oxide Surface Nanostructures. Langmuir, 2011, 27, 9662-9665.	1.6	33
49	Domain Formation and Molecular Diffusion in Supported Lipid Bilayers on Oxide Surfaces. Membrane, 2011, 36, 16-23.	0.0	0
50	Protein patterning by atmospheric-pressure plasmas. Journal of Physics: Conference Series, 2010, 232, 012019.	0.3	6
51	Clustering effects of GM1 and formation mechanisms of interdigitated liquid disordered domains in GM1/SM/CHOL-supported planar bilayers on mica surfaces. Chemical Physics Letters, 2010, 497, 108-114.	1.2	10
52	Synchrotron-radiation-stimulated etching of polydimethylsiloxane using XeF2as a reaction gas. Journal of Synchrotron Radiation, 2010, 17, 69-74.	1.0	2
53	First Direct Visualization of Spillover Species Emitted from Pt Nanoparticles. Langmuir, 2010, 26, 16392-16396.	1.6	16
54	The PDMS-based microfluidic channel fabricated by synchrotron radiation stimulated etching. Optics Express, 2010, 18, 9733.	1.7	6

#	Article	IF	CITATIONS
55	Surface-induced phase separation of a sphingomyelin/cholesterol/ganglioside GM1-planar bilayer on mica surfaces and microdomain molecular conformation that accelerates Aβ oligomerization. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1090-1099.	1.4	45
56	Polymerized Lipid Bilayers on a Solid Substrate: Morphologies and Obstruction of Lateral Diffusion. Langmuir, 2009, 25, 345-351.	1.6	52
57	Effects of Applied Voltage on the Size of Phase-Separated Domains in DMPS-DOPC Lipid Binary Bilayers Supported on SiO ₂ /Si Substrates. Transactions of the Materials Research Society of Japan, 2009, 34, 217-220.	0.2	0
58	Local Condensation of Artificial Raft Domains under Light Irradiation in Supported Lipid Bilayer of PSM-DOPC-Cholesterol System. Transactions of the Materials Research Society of Japan, 2009, 34, 179-182.	0.2	0
59	Shape Transformation of Adsorbed Vesicles on Oxide Surfaces: Effect of Substrate Material and Photo-Irradiation. Transactions of the Materials Research Society of Japan, 2009, 34, 183-188.	0.2	3
60	Supported Lipid Bilayer. Hyomen Kagaku, 2009, 30, 207-218.	0.0	1
61	Incubation type Si-based planar ion channel biosensor. Analytical and Bioanalytical Chemistry, 2008, 391, 2703-2709.	1.9	18
62	Lattice-work structure of a TiO2(001) surface studied by STM, core-level spectroscopies and DFT calculations. Chemical Physics Letters, 2008, 454, 350-354.	1.2	25
63	The morphology of GM1 /SM0.6â^'/Chol0.4 planar bilayers supported on SiO2 surfaces. Chemical Physics Letters, 2008, 460, 289-294.	1.2	15
64	New infrared reflection absorption spectroscopy (IRRAS) system for observation of solid–solution interface biomaterials. Chemical Physics Letters, 2008, 466, 235-239.	1.2	4
65	Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator substrate. Thin Solid Films, 2008, 516, 2813-2815.	0.8	22
66	Lipid Bilayer Membrane with Atomic Step Structure: Supported Bilayer on a Step-and-Terrace TiO ₂ (100) Surface. Langmuir, 2008, 24, 11567-11576.	1.6	76
67	Local Concentration of Gel Phase Domains in Supported Lipid Bilayers under Light Irradiation in Binary Mixture of Phospholipids Doped with Dyes for Photoinduced Activation. Langmuir, 2008, 24, 10974-10980.	1.6	11
68	Supported lipid bilayer membranes on SiO 2 and TiO 2 : substrate effects on membrane formation and shape transformation. , 2007, , .		8
69	Immobilization of protein molecules on step-controlled sapphire surfaces. Surface Science, 2007, 601, 4915-4921.	0.8	15
70	Supported phospholipid bilayer formation on hydrophilicity-controlled silicon dioxide surfaces. Physical Chemistry Chemical Physics, 2006, 8, 3885.	1.3	83
71	Orientation of avidin molecules immobilized on COOH-modified SiO2/Si(100) surfaces. Chemical Physics Letters, 2006, 419, 86-90.	1.2	28
72	Supported lipid bilayer formation by the giant vesicle fusion induced by vesicle–surface electrostatic attractive interaction. Chemical Physics Letters, 2006, 420, 569-573.	1.2	35

#	Article	IF	CITATIONS
73	AFM characterization of gramicidin-A in tethered lipid membrane on silicon surface. Chemical Physics Letters, 2006, 429, 244-249.	1.2	26
74	Noise Analysis of Si-Based Planar-Type Ion-Channel Biosensors. Japanese Journal of Applied Physics, 2006, 45, L1334-L1336.	0.8	9
75	Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 317-322.	1.7	12
76	Fabrication of avidin single molecular layer on silicon oxide surfaces and formation of tethered lipid bilayer membranes. E-Journal of Surface Science and Nanotechnology, 2005, 3, 237-243.	0.1	27
77	Giant Vesicle Fusion on Microelectrodes Fabricated by Femtosecond Laser Ablation Followed by Synchrotron Radiation Etching. Japanese Journal of Applied Physics, 2005, 44, L1207-L1210.	0.8	4
78	Deposition of lipid bilayers on OH-density-controlled silicon dioxide surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 751-754.	0.9	12
79	Fluorescence Recovery after Photo-bleaching Apparatus Using Second Harmonic of 1120 nm Semiconductor Laser for Illumination. E-Journal of Surface Science and Nanotechnology, 2005, 3, 254-257.	0.1	0
80	Shrinking of Spin-On-Glass Films Induced by Synchrotron Radiation and Its Application to Three-Dimensional Microfabrications. Japanese Journal of Applied Physics, 2004, 43, 3941-3944.	0.8	8
81	Characterization of Dipalmitoylphosphatidylcholine/Cholesterol Langmuir-Blodgett Monolayers Investigated by Atomic Force Microscopy and Fourier Transform Infrared Spectroscopy. Japanese Journal of Applied Physics, 2004, 43, 3860-3864.	0.8	11
82	Structure and Deposition Mechanism of 10-Undecenoic Acid Self-Assembled Layers on H-Si (111) Surfaces Studied by Atomic Force Microscopy and Fourier-Transform Infrared. Japanese Journal of Applied Physics, 2004, 43, 4591-4594.	0.8	1
83	Dynamic Aspects and Associated Structures of TiO2(110) and CeO2(111) Surfaces Relevant to Oxide Catalyses. ChemInform, 2004, 35, no.	0.1	0
84	Deposition of phospholipid layers on SiO2 surface modified by alkyl-SAM islands. Applied Surface Science, 2004, 238, 218-222.	3.1	14
85	Deposition of 10-undecenoic acid self-assembled layers on H–Si(111) surfaces studied with AFM and FT-IR. Applied Surface Science, 2004, 238, 238-241.	3.1	9
86	Lipid Membrane Formation by Vesicle Fusion on Silicon Dioxide Surfaces Modified with Alkyl Self-Assembled Monolayer Islands. Langmuir, 2004, 20, 7526-7531.	1.6	45
87	Photo-Oxidation of Methanol and Formic Acid on Rutile TiO2(001) Studied by STM. Microscopy and Microanalysis, 2004, 10, 482-483.	0.2	1
88	Dynamic aspects and associated structures of TiO2(110) and CeO2(111) surfaces relevant to oxide catalyses. Physical Chemistry Chemical Physics, 2003, 5, 5349.	1.3	35
89	Atom-Resolved Surface Structures and Molecular Adsorption on TiO2(001) Investigated by Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2003, 107, 3207-3214.	1.2	45
90	Self-Limiting Growth of Pt Nanoparticles fromMeCpPtMe3Adsorbed onTiO2(110)Studied by Scanning Tunneling Microscopy. Physical Review Letters, 2003, 91, 066102.	2.9	29

#	Article	IF	CITATIONS
91	Oxygen adsorption states on Mo() surface studied by HREELS. Surface Science, 2002, 502-503, 136-143.	0.8	28
92	Atom-Resolved Structures of TiO2(001) Surface by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 2001, 40, 4331-4333.	0.8	22
93	CO Adsorption on c(2×2)-Li/Cu(100): interaction between CO and Li on unreconstructed Cu(100) surfaces. Surface Science, 2000, 448, 250-260.	0.8	9
94	CO-induced destruction of Cu(100)–(2×1)Li studied by HREELS. Surface Science, 1999, 427-428, 408-413.	0.8	3
95	Shrinking of spin-on-glass films induced by synchrotron radiation and its application to the 3-D microfabrications. , 0, , .		Ο