Ryugo Tero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4225866/publications.pdf

Version: 2024-02-01

257357 345118 1,636 95 24 h-index citations papers

g-index 96 96 96 1837 docs citations times ranked citing authors all docs

36

#	Article	IF	Citations
1	Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers. Materials, 2012, 5, 2658-2680.	1.3	121
2	Supported phospholipid bilayer formation on hydrophilicity-controlled silicon dioxide surfaces. Physical Chemistry Chemical Physics, 2006, 8, 3885.	1.3	83
3	Lipid Bilayer Membrane with Atomic Step Structure: Supported Bilayer on a Step-and-Terrace TiO ₂ (100) Surface. Langmuir, 2008, 24, 11567-11576.	1.6	76
4	Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria. Scientific Reports, 2016, 6, 21867.	1.6	67
5	Enhancement of Electricity Production by Graphene Oxide in Soil Microbial Fuel Cells and Plant Microbial Fuel Cells. Frontiers in Bioengineering and Biotechnology, 2015, 3, 42.	2.0	64
6	Polymerized Lipid Bilayers on a Solid Substrate: Morphologies and Obstruction of Lateral Diffusion. Langmuir, 2009, 25, 345-351.	1.6	52
7	Atom-Resolved Surface Structures and Molecular Adsorption on TiO2(001) Investigated by Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2003, 107, 3207-3214.	1.2	45
8	Lipid Membrane Formation by Vesicle Fusion on Silicon Dioxide Surfaces Modified with Alkyl Self-Assembled Monolayer Islands. Langmuir, 2004, 20, 7526-7531.	1.6	45
9	Surface-induced phase separation of a sphingomyelin/cholesterol/ganglioside GM1-planar bilayer on mica surfaces and microdomain molecular conformation that accelerates $\hat{Al^2}$ oligomerization. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1090-1099.	1.4	45
10	Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species. Archives of Biochemistry and Biophysics, 2016, 605, 26-33.	1.4	38
11	Construction and Structural Analysis of Tethered Lipid Bilayer Containing Photosynthetic Antenna Proteins for Functional Analysis. Biomacromolecules, 2011, 12, 2850-2858.	2.6	37
12	Dynamic aspects and associated structures of TiO2(110) and CeO2(111) surfaces relevant to oxide catalyses. Physical Chemistry Chemical Physics, 2003, 5 , 5349 .	1.3	35
13	Supported lipid bilayer formation by the giant vesicle fusion induced by vesicle–surface electrostatic attractive interaction. Chemical Physics Letters, 2006, 420, 569-573.	1.2	35
14	Anomalous Diffusion in Supported Lipid Bilayers Induced by Oxide Surface Nanostructures. Langmuir, 2011, 27, 9662-9665.	1.6	33
15	Plasma irradiation of artificial cell membrane system at solid–liquid interface. Applied Physics Express, 2014, 7, 077001.	1.1	31
16	Formation of Cell Membrane Component Domains in Artificial Lipid Bilayer. Scientific Reports, 2017, 7, 17905.	1.6	30
17	Self-Limiting Growth of Pt Nanoparticles fromMeCpPtMe3Adsorbed onTiO2(110)Studied by Scanning Tunneling Microscopy. Physical Review Letters, 2003, 91, 066102.	2.9	29
18	Oxygen adsorption states on Mo() surface studied by HREELS. Surface Science, 2002, 502-503, 136-143.	0.8	28

#	Article	IF	Citations
19	Orientation of avidin molecules immobilized on COOH-modified SiO2/Si(100) surfaces. Chemical Physics Letters, 2006, 419, 86-90.	1.2	28
20	Fabrication of avidin single molecular layer on silicon oxide surfaces and formation of tethered lipid bilayer membranes. E-Journal of Surface Science and Nanotechnology, 2005, 3, 237-243.	0.1	27
21	AFM characterization of gramicidin-A in tethered lipid membrane on silicon surface. Chemical Physics Letters, 2006, 429, 244-249.	1.2	26
22	Ecofriendly Route for the Synthesis of Highly Conductive Graphene Using Extremophiles for Green Electronics and Bioscience. Particle and Particle Systems Characterization, 2013, 30, 573-578.	1,2	26
23	Lattice-work structure of a TiO2(001) surface studied by STM, core-level spectroscopies and DFT calculations. Chemical Physics Letters, 2008, 454, 350-354.	1.2	25
24	Fabrication of Supported Lipid Bilayer on Graphene Oxide. Journal of Physics: Conference Series, 2012, 352, 012017.	0.3	25
25	Reduction in lateral lipid mobility of lipid bilayer membrane by atmospheric pressure plasma irradiation. Japanese Journal of Applied Physics, 2016, 55, 03DF05.	0.8	24
26	Atom-Resolved Structures of TiO2(001) Surface by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 2001, 40, 4331-4333.	0.8	22
27	Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator substrate. Thin Solid Films, 2008, 516, 2813-2815.	0.8	22
28	Characterization of graphene oxide reduced through chemical and biological processes. Journal of Physics: Conference Series, 2013, 433, 012001.	0.3	22
29	Substrate-Induced Structure and Molecular Dynamics in a Lipid Bilayer Membrane. Langmuir, 2017, 33, 14748-14755.	1.6	22
30	Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. Chemical Record, 2020, 20, 730-742.	2.9	22
31	Reduced Graphene Oxide as the Support for Lipid Bilayer Membrane. Journal of Physics: Conference Series, 2012, 352, 012016.	0.3	19
32	Incubation type Si-based planar ion channel biosensor. Analytical and Bioanalytical Chemistry, 2008, 391, 2703-2709.	1.9	18
33	Imaging Characterization of Cluster-Induced Morphological Changes of a Model Cell Membrane. Journal of Physical Chemistry C, 2016, 120, 15640-15647.	1.5	18
34	Microorganism mediated synthesis of reduced graphene oxide films. Journal of Physics: Conference Series, 2012, 352, 012011.	0.3	17
35	Morphology and Physical Properties of Hydrophilic-Polymer-Modified Lipids in Supported Lipid Bilayers. Langmuir, 2018, 34, 7201-7209.	1.6	17
36	First Direct Visualization of Spillover Species Emitted from Pt Nanoparticles. Langmuir, 2010, 26, 16392-16396.	1.6	16

#	Article	IF	Citations
37	Amphiphobic Septa Enhance the Mechanical Stability of Free-Standing Bilayer Lipid Membranes. Langmuir, 2018, 34, 5615-5622.	1.6	16
38	Immobilization of protein molecules on step-controlled sapphire surfaces. Surface Science, 2007, 601, 4915-4921.	0.8	15
39	The morphology of GM1 /SM0.6â^'/Chol0.4 planar bilayers supported on SiO2 surfaces. Chemical Physics Letters, 2008, 460, 289-294.	1.2	15
40	Deposition of phospholipid layers on SiO2 surface modified by alkyl-SAM islands. Applied Surface Science, 2004, 238, 218-222.	3.1	14
41	Lateral Diffusion and Molecular Interaction in a Bilayer Membrane Consisting of Partially Fluorinated Phospholipids. Langmuir, 2016, 32, 10712-10718.	1.6	13
42	Septin Interferes with the Temperature-Dependent Domain Formation and Disappearance of Lipid Bilayer Membranes. Langmuir, 2016, 32, 12823-12832.	1.6	13
43	Reviews in Plasmonics 2010. International Journal of Behavioral and Consultation Therapy, 2012, , .	0.4	13
44	Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 317-322.	1.7	12
45	Deposition of lipid bilayers on OH-density-controlled silicon dioxide surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 751-754.	0.9	12
46	Characterization of Dipalmitoylphosphatidylcholine/Cholesterol Langmuir-Blodgett Monolayers Investigated by Atomic Force Microscopy and Fourier Transform Infrared Spectroscopy. Japanese Journal of Applied Physics, 2004, 43, 3860-3864.	0.8	11
47	Local Concentration of Gel Phase Domains in Supported Lipid Bilayers under Light Irradiation in Binary Mixture of Phospholipids Doped with Dyes for Photoinduced Activation. Langmuir, 2008, 24, 10974-10980.	1.6	11
48	Forming two-dimensional structure of DNA-functionalized Au nanoparticles via lipid diffusion in supported lipid bilayers. Journal of Crystal Growth, 2014, 401, 494-498.	0.7	11
49	Clustering effects of GM1 and formation mechanisms of interdigitated liquid disordered domains in GM1/SM/CHOL-supported planar bilayers on mica surfaces. Chemical Physics Letters, 2010, 497, 108-114.	1.2	10
50	Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma–liquid interface. Japanese Journal of Applied Physics, 2015, 54, 01AF03.	0.8	10
51	CO Adsorption on c($2\tilde{A}$ —2)-Li/Cu(100): interaction between CO and Li on unreconstructed Cu(100) surfaces. Surface Science, 2000, 448, 250-260.	0.8	9
52	Deposition of 10-undecenoic acid self-assembled layers on Hâ \in Si(111) surfaces studied with AFM and FT-IR. Applied Surface Science, 2004, 238, 238-241.	3.1	9
53	Noise Analysis of Si-Based Planar-Type Ion-Channel Biosensors. Japanese Journal of Applied Physics, 2006, 45, L1334-L1336.	0.8	9
54	Origin of 1/ <i>f</i> i>f noise in graphene produced for largeâ€scale applications in electronics. IET Circuits, Devices and Systems, 2015, 9, 52-58.	0.9	9

#	Article	IF	CITATIONS
55	Shrinking of Spin-On-Glass Films Induced by Synchrotron Radiation and Its Application to Three-Dimensional Microfabrications. Japanese Journal of Applied Physics, 2004, 43, 3941-3944.	0.8	8
56	Supported lipid bilayer membranes on SiO 2 and TiO 2 : substrate effects on membrane formation and shape transformation. , 2007, , .		8
57	Effect of magnesium ion concentration on two-dimensional structure of DNA-functionalized nanoparticles on supported lipid bilayer. Japanese Journal of Applied Physics, 2016, 55, 03DF11.	0.8	8
58	Supported Lipid Bilayers of Escherichia coli Extracted Lipids and Their Calcium Dependence. Frontiers in Materials, 2018, 5, .	1.2	8
59	Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183626.	1.4	8
60	Non-raft Submicron Domain Formation in Cholesterol-containing Lipid Bilayers Induced by Polyunsaturated Phosphatidylethanolamine. Colloids and Surfaces B: Biointerfaces, 2021, 210, 112235.	2.5	8
61	Protein patterning by atmospheric-pressure plasmas. Journal of Physics: Conference Series, 2010, 232, 012019.	0.3	6
62	The PDMS-based microfluidic channel fabricated by synchrotron radiation stimulated etching. Optics Express, 2010, 18, 9733.	1.7	6
63	Preparation of tethered-type supported lipid bilayer using water-soluble silane coupling agent. Japanese Journal of Applied Physics, 2019, 58, SIID05.	0.8	6
64	Formation of supported lipid bilayers of Escherichia coli extracted lipids and their surface morphologies. Japanese Journal of Applied Physics, 2019, 58, SIIB19.	0.8	6
65	Fluidity evaluation of cell membrane model formed on graphene oxide with single particle tracking using quantum dot. Japanese Journal of Applied Physics, 2015, 54, 04DL09.	0.8	5
66	Establishment of a cell-free translation system from rice callus extracts. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2028-2036.	0.6	5
67	Physical Properties and Reactivity of Microdomains in Phosphatidylinositol-Containing Supported Lipid Bilayer. Membranes, 2021, 11, 339.	1.4	5
68	Giant Vesicle Fusion on Microelectrodes Fabricated by Femtosecond Laser Ablation Followed by Synchrotron Radiation Etching. Japanese Journal of Applied Physics, 2005, 44, L1207-L1210.	0.8	4
69	New infrared reflection absorption spectroscopy (IRRAS) system for observation of solid–solution interface biomaterials. Chemical Physics Letters, 2008, 466, 235-239.	1.2	4
70	Extracellular Matrix Patterning for Cell Alignment by Atmospheric Pressure Plasma Jets. Japanese Journal of Applied Physics, 2012, 51, 036201.	0.8	4
71	Formation and fluidity measurement of supported lipid bilayer on polyvinyl chloride membrane. AIP Conference Proceedings, 2014, , .	0.3	4
72	Quenching Efficiency of Quantum Dots Conjugated to Lipid Bilayers on Graphene Oxide Evaluated by Fluorescence Single Particle Tracking. Applied Sciences (Switzerland), 2022, 12, 3733.	1.3	4

#	Article	IF	Citations
73	CO-induced destruction of Cu(100)–(2×1)Li studied by HREELS. Surface Science, 1999, 427-428, 408-413.	0.8	3
74	Shape Transformation of Adsorbed Vesicles on Oxide Surfaces: Effect of Substrate Material and Photo-Irradiation. Transactions of the Materials Research Society of Japan, 2009, 34, 183-188.	0.2	3
75	Lipid bilayer formation on an ion image sensor and measurement of time response of potential dependency on ion concentration. Japanese Journal of Applied Physics, 2019, 58, SDDK06.	0.8	3
76	Proteoliposome fusion to artificial lipid bilayer promoted by domains of polyunsaturated phosphatidylethanolamine. Japanese Journal of Applied Physics, 2019, 58, SIIB13.	0.8	3
77	Extracellular Matrix Patterning for Cell Alignment by Atmospheric Pressure Plasma Jets. Japanese Journal of Applied Physics, 2012, 51, 036201.	0.8	3
78	Synchrotron-radiation-stimulated etching of polydimethylsiloxane using XeF2as a reaction gas. Journal of Synchrotron Radiation, 2010, 17, 69-74.	1.0	2
79	Electroformation from patterned single-layered supported lipid bilayers for formation of giant vesicles with narrow size distribution. Applied Physics Express, 2014, 7, 117001.	1.1	2
80	Substrate-induced electrostatic potential varies composition of supported lipid bilayer containing anionic lipid. Japanese Journal of Applied Physics, 2022, 61, SC1026.	0.8	2
81	Structure and Deposition Mechanism of 10-Undecenoic Acid Self-Assembled Layers on H-Si (111) Surfaces Studied by Atomic Force Microscopy and Fourier-Transform Infrared. Japanese Journal of Applied Physics, 2004, 43, 4591-4594.	0.8	1
82	Photo-Oxidation of Methanol and Formic Acid on Rutile TiO2(001) Studied by STM. Microscopy and Microanalysis, 2004, 10, 482-483.	0.2	1
83	Phase transition process in DDAB supported lipid bilayer. Journal of Crystal Growth, 2017, 468, 88-92.	0.7	1
84	Stimulations inducing tethered lipid bilayer formation on proteinâ€modified substrate. Electronics and Communications in Japan, 2020, 103, 36-42.	0.3	1
85	Fabrication and Application of Plasmonic Silver Nanosheet. International Journal of Behavioral and Consultation Therapy, 2012, , 139-157.	0.4	1
86	Supported Lipid Bilayer. Hyomen Kagaku, 2009, 30, 207-218.	0.0	1
87	Shrinking of spin-on-glass films induced by synchrotron radiation and its application to the 3-D microfabrications. , 0, , .		0
88	Dynamic Aspects and Associated Structures of TiO2(110) and CeO2(111) Surfaces Relevant to Oxide Catalyses. ChemInform, 2004, 35, no.	0.1	0
89	Effects of Applied Voltage on the Size of Phase-Separated Domains in DMPS-DOPC Lipid Binary Bilayers Supported on SiO ₂ /Si Substrates. Transactions of the Materials Research Society of Japan, 2009, 34, 217-220.	0.2	0
90	Local Condensation of Artificial Raft Domains under Light Irradiation in Supported Lipid Bilayer of PSM-DOPC-Cholesterol System. Transactions of the Materials Research Society of Japan, 2009, 34, 179-182.	0.2	0

Ryugo Tero

#	Article	IF	CITATIONS
91	Fluorescence Recovery after Photo-bleaching Apparatus Using Second Harmonic of 1120 nm Semiconductor Laser for Illumination. E-Journal of Surface Science and Nanotechnology, 2005, 3, 254-257.	0.1	0
92	Domain Formation and Molecular Diffusion in Supported Lipid Bilayers on Oxide Surfaces. Membrane, 2011, 36, 16-23.	0.0	0
93	Supported Lipid Membranes as Reaction Fields. Seibutsu Butsuri, 2012, 52, 283-286.	0.0	0
94	Stimulations Inducing Tethered Lipid Bilayer Formation on Protein-Modified Substrate. IEEJ Transactions on Electronics, Information and Systems, 2020, 140, 447-451.	0.1	0
95	Capability of Polyunsaturated Phosphatidylcholine for Non-raft Domain Formation in Cholesterol-containing Lipid Bilayers. E-Journal of Surface Science and Nanotechnology, 2022, , .	0.1	0