

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4225642/publications.pdf Version: 2024-02-01

ΜΜΔυ

#	Article	IF	CITATIONS
1	Applications of Satellite-Derived Ocean Measurements to Tropical Cyclone Intensity Forecasting. Oceanography, 2009, 22, 190-197.	1.0	136
2	Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Natural Hazards, 2013, 66, 1481-1500.	3.4	98
3	Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Geophysical Research Letters, 2004, 31, .	4.0	95
4	Effects of eddies on Bay of Bengal cyclone intensity. Eos, 2007, 88, 93-95.	0.1	88
5	Detection of Bay of Bengal eddies from TOPEX and <i>in situ</i> observations. Journal of Marine Research, 2000, 58, 721-734.	0.3	65
6	On the epochal variation of intensity of tropical cyclones in the Arabian Sea. Atmospheric Science Letters, 2013, 14, 249-255.	1.9	49
7	A Neural Network Approach to Estimate Tropical Cyclone Heat Potential in the Indian Ocean. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 1114-1117.	3.1	42
8	Predicting cyclone tracks in the north Indian Ocean: An artificial neural network approach. Geophysical Research Letters, 2007, 34, .	4.0	37
9	Estimation of Sound Speed Profiles Using Artificial Neural Networks. IEEE Geoscience and Remote Sensing Letters, 2006, 3, 467-470.	3.1	35
10	Impact of sea surface temperature in modulating movement and intensity of tropical cyclones. Natural Hazards, 2007, 41, 413-427.	3.4	35
11	Ocean Observations in Support of Studies and Forecasts of Tropical and Extratropical Cyclones. Frontiers in Marine Science, 2019, 6, .	2.5	31
12	Relationship Between Cyclone Intensities and Sea Surface Temperature in the Tropical Indian Ocean. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 841-844.	3.1	29
13	Estimation of mixed-layer depth from surface parameters. Journal of Marine Research, 2006, 64, 745-758.	0.3	27
14	Statistical Evidence for the Role of Southwestern Indian Ocean Heat Content in the Indian Summer Monsoon Rainfall. Scientific Reports, 2018, 8, 12092.	3.3	25
15	On the dynamics of cyclogenesis, rapid intensification and recurvature of the very severe cyclonic storm, Ockhi. Journal of Earth System Science, 2020, 129, 1.	1.3	22
16	Use of Sea Surface Temperature for Cyclone Intensity Prediction Needs a Relook. Eos, 2013, 94, 177-177.	0.1	21
17	A softâ€computing cyclone intensity prediction scheme for the Western North Pacific Ocean. Atmospheric Science Letters, 2013, 14, 187-192.	1.9	20
18	Validation of satellite-derived tropical cyclone heat potential with <i>in situ</i> observations in the North Indian Ocean. Remote Sensing Letters, 2012, 3, 615-620.	1.4	19

M M Ali

#	Article	IF	CITATIONS
19	Monsoonal intraseasonal oscillations in the ocean heat content over the surface layers of the Bay of Bengal. Journal of Marine Systems, 2017, 167, 19-32.	2.1	19
20	Estimation of sonic layer depth from surface parameters. Geophysical Research Letters, 2007, 34, .	4.0	18
21	Atmospheric CO2 Variations in Two Contrasting Environmental Sites Over India. Air, Soil and Water Research, 2014, 7, ASWR.S13987.	2.5	17
22	Distinctive features of rainfall over the Indian homogeneous rainfall regions between strong and weak Indian summer monsoons. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5631-5647.	3.3	17
23	Seasonal Occurrence of Unique Sediment Plume in the Bay of Bengal. Eos, 2008, 89, 22-23.	0.1	16
24	Temporal Variations of Atmospheric CO ₂ in Dehradun, India during 2009. Air, Soil and Water Research, 2013, 6, ASWR.S10590.	2.5	15
25	Relationship between ocean mean temperatures and Indian summer monsoon rainfall. Atmospheric Science Letters, 2015, 16, 408-413.	1.9	15
26	Heat content of the Arabian Sea Mini Warm Pool is increasing. Atmospheric Science Letters, 2016, 17, 39-42.	1.9	15
27	Identification of Large-Scale Atmospheric and Oceanic Features fromIRS-P4Multifrequency Scanning Microwave Radiometer: Preliminary Results. Journal of Atmospheric and Oceanic Technology, 2002, 19, 1127-1134.	1.3	13
28	Interannual Variation of Eddy Kinetic Energy from TOPEX Altimeter Observations. Marine Geodesy, 1999, 22, 239-248.	2.0	12
29	A Neural Network Approach to Improve the Vertical Resolution of Atmospheric Temperature Profiles From Geostationary Satellites. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 34-37.	3.1	11
30	Net surface radiation retrieval using Earth Observation Satellite data and machine learning algorithm. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, O, II-8, 9-12.	0.0	11
31	Contribution of Monthly and Regional Rainfall to the Strength of Indian Summer Monsoon. Monthly Weather Review, 2016, 144, 3037-3055.	1.4	10
32	Global assessment of tropical cyclone intensity statistical–dynamical hindcasts. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2143-2156.	2.7	10
33	An Artificial Neural Network Model Function (AMF) for SARAL-Altika Winds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 5317-5323.	4.9	9
34	Estimation of mixed layer depth in the equatorial Indian Ocean using Geosat altimeter data. Marine Geodesy, 1994, 17, 63-72.	2.0	8
35	Estimation of Ship Velocities From MODIS and OCM. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 437-439.	3.1	8
36	Estimating Wind Stress at the Ocean Surface From Scatterometer Observations. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1129-1132.	3.1	8

M M Ali

#	Article	IF	CITATIONS
37	Estimation of Heat Content and Mean Temperature of Different Ocean Layers. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 1251-1255.	4.9	8
38	Inference of the reversal of mixed layer zonal slope along the Equatorial Indian Ocean using Geosat altimeter data. International Journal of Remote Sensing, 1993, 14, 2043-2049.	2.9	7
39	Application of Satellite Remote Sensing for Investigation of Suspended Sediment Dispersion Pattern in the Near Shore Region: A Case Study from the Central West Coast of India. Journal of Coastal Research, 2012, 280, 399-406.	0.3	7
40	Artificial Neural Network (ANN) Based Inversion of Benthic Substrate Bottom Type and Bathymetry in Optically Shallow Waters - Initial Model Results. Journal of the Indian Society of Remote Sensing, 2012, 40, 137-143.	2.4	7
41	Estimation of net surface radiation from eddy flux tower measurements using artificial neural network for cloudy skies. Sustainable Environment Research, 2016, 26, 44-50.	4.2	7
42	Estimation of sea level pressure fields during Cyclone Nilam from Oceansatâ€⊋ scatterometer winds. Atmospheric Science Letters, 2014, 15, 65-71.	1.9	5
43	DIURNAL AND SEASONAL VARIATION OF MEASURED ATMOSPHERIC CO ₂ AT DEHRADUN DURING 2009. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXVIII-8/W20, 87-90.	0.2	5
44	Impact of Ocean Currents on Wind Stress in the Tropical Indian Ocean. Remote Sensing, 2022, 14, 1547.	4.0	5
45	Estimation of the azimuthal velocity and the elevation of an eddy from simulated altimeter data. International Journal of Remote Sensing, 1992, 13, 2215-2222.	2.9	4
46	Obtaining sea surface height signals from ERSâ€₁ altimeter data. Marine Geodesy, 1993, 16, 241-251.	2.0	4
47	Study of seasonal current variability in the Arabian Sea using Geosat altimeter data. International Journal of Remote Sensing, 1995, 16, 2691-2701.	2.9	4
48	Near-Real-Time Availability of Ocean Heat Content Over the North Indian Ocean. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1033-1036.	3.1	4
49	Retrieval of Wind Stress at the Ocean Surface From AltiKa Measurements. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 821-825.	3.1	4
50	A softâ€computing ensemble approach (<scp>SEA</scp>) to forecast <scp>I</scp> ndian summer monsoon rainfall. Meteorological Applications, 2017, 24, 308-314.	2.1	4
51	Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean. Climate, 2018, 6, 71.	2.8	4
52	Estimation of the horizontal velocity of the Socotra eddy and some observations of sea surface thermal features using INSAT-1B. International Journal of Remote Sensing, 1990, 11, 41-47.	2.9	3
53	Estimation of wind stress induced offshore upwelling. Continental Shelf Research, 1995, 15, 757-762.	1.8	3
54	Variation of mixed layer depth obtained from Geosat altimeter observations in the equatorial Indian Ocean. International Journal of Remote Sensing, 1996, 17, 1539-1545.	2.9	3

M M Ali

#	Article	IF	CITATIONS
55	Role of ocean heat content in boosting post-monsoon tropical storms over Bay of Bengal during La-Niña events. Climate Dynamics, 2019, 52, 7225-7234.	3.8	3
56	Statistical evidence on distinct impacts of short- and long-time fluctuations of Indian Ocean surface wind fields on Indian summer monsoon rainfall during 1991–2014. Climate Dynamics, 2020, 54, 3053-3076.	3.8	3
57	A comparison of the wind magnitudes obtained from the microwave radiometer onboard IRSâ€P4 satellite and the ERSâ€2 scatterometer. International Journal of Remote Sensing, 2005, 26, 2479-2485.	2.9	2
58	Satellite-Derived Ocean Heat Content Improves Cyclone Predictions: Utilization of Satellite-Derived Oceanic Heat Content for Cyclone Studies: Hyderabad, India, 25-26 March 2010. Eos, 2010, 91, 396-396.	0.1	2
59	Upper-Ocean Processes Controlling the Near-Surface Temperature in the Western Gulf of Mexico from a Multidecadal Numerical Simulation. Earth, 2022, 3, 493-521.	2.2	2
60	Observation of interannual sea level oscillations in the Indian Ocean using Geosat altimeter data. Marine Geodesy, 1994, 17, 1-9.	2.0	1
61	Studying Indian ocean typical dynamical phenomena using TOPEX observations. Marine Geodesy, 1998, 21, 193-201.	2.0	1
62	Estimation of upper ocean heat content from remote sensing observations in the Arabian Sea. , 2006, , .		1
63	An improved potential intensity estimate for Bay of Bengal tropical cyclones. Natural Hazards, 2020, 104, 2635-2644.	3.4	1
64	RECENT RESULTS FROM EO STUDIES ON INDIAN CARBON CYCLE ASSESSMENT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXVIII-8/W20, 3-9.	0.2	1
65	Role of Sea Surface Temperature in Simulation of Arabian Sea Cyclone. , 2014, , 337-351.		1
66	Supplementing Oscat winds with Saral Altika observations for cyclone studies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-8, 1059-1064.	0.2	1
67	Role of absorbed solar radiation on Indian Ocean surface temperature: A case study for calm winds using satellite data. Remote Sensing of Environment, 1989, 30, 107-111.	11.0	Ο
68	Validity of ERS-1 altimeter corrections. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36, 1003-1006.	6.3	0
69	Determination of dynamic heights in the Bay of Bengal from XBT profiles and climatological salinities. Journal of Marine Research, 2005, 63, 671-682.	0.3	0
70	Interâ€comparison of NOAAâ€AVHRR and IRSâ€P4 (MSMR) derived sea surface temperatures. International Journal of Remote Sensing, 2006, 27, 3123-3130.	2.9	0
71	Correction to "A Neural Network Approach to Estimate Tropical Cyclone Heat Potential in the Indian Ocean―[Nov 12 1114-1117]. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 642-642.	3.1	0
72	Estimation of net surface radiation using eddy flux tower data over a tropical mangrove forest of Sundarban, West Bengal. Geofizika, 2016, 33, 1-14.	0.4	0

#	Article	IF	CITATIONS
73	Impact of the Madden–Julian Oscillation on North Indian Ocean Cyclone Intensity. Atmosphere, 2021, 12, 1554.	2.3	Ο