
Juan J Vaquero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4225349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyridazino-pyrrolo-quinoxalinium salts as highly potent and selective leishmanicidal agents targeting trypanothione reductase. European Journal of Medicinal Chemistry, 2022, 227, 113915.	5.5	4
2	Metalâ€Free Temperatureâ€Controlled Regiodivergent Borylative Cyclizations of Enynes: BCl ₃ â€Promoted Skeletal Rearrangement. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
3	Recent developments in the chemistry of BN-aromatic hydrocarbons. Advances in Heterocyclic Chemistry, 2021, , 197-259.	1.7	22
4	Enantioselective Copper-Catalyzed Synthesis of Trifluoromethyl-Cyclopropylboronates. Organic Letters, 2021, 23, 6174-6178.	4.6	17
5	A Computerâ€Driven Scaffoldâ€Hopping Approach Generating New PTP1B Inhibitors from the Pyrrolo[1,2â€ <i>a</i>]quinoxaline Core. ChemMedChem, 2021, 16, 2895-2906.	3.2	11
6	Tripeptides as Integrin-Linked Kinase Modulating Agents Based on a Protein–Protein Interaction with α-Parvin. ACS Medicinal Chemistry Letters, 2021, 12, 1656-1662.	2.8	4
7	A new family of fluorescent pyridazinobenzimidazolium cations with DNA binding properties. Dyes and Pigments, 2021, 192, 109443.	3.7	3
8	1,10a-Dihydro-1-aza-10a-boraphenanthrene and 6a,7-Dihydro-7-aza-6a-boratetraphene: Two New Fluorescent BN-PAHs. Journal of Organic Chemistry, 2021, 86, 16259-16267.	3.2	9
9	Synthesis and Photophysical Behavior of a Highly Fluorescent Family of Unsymmetrical Organoboron Complexes Containing 5-(Pyridin-2-ylmethylene)imidazolidine-2,4-dione Moieties. Journal of Organic Chemistry, 2020, 85, 441-448.	3.2	6
10	Pyrrolo[1,2â€ <i>a</i>]quinoxalines: Insulin Mimetics that Exhibit Potent and Selective Inhibition against Protein Tyrosine Phosphatase 1B. ChemMedChem, 2020, 15, 1788-1801.	3.2	9
11	Selective Synthesis of Phenanthrenes and Dihydrophenanthrenes via Gold-Catalyzed Cycloisomerization of Biphenyl Embedded Trienynes. Organic Letters, 2020, 22, 8464-8469.	4.6	14
12	Expanding the BN-embedded PAH family: 4 <i>a</i> -aza-12 <i>a</i> -borachrysene. Chemical Communications, 2020, 56, 3669-3672.	4.1	13
13	Practical Solventâ€Free Microwaveâ€Assisted Hydroboration of Alkynes. European Journal of Organic Chemistry, 2020, 2020, 3024-3029.	2.4	9
14	Remarkable effect of alkynyl substituents on the fluorescence properties of a BN-phenanthrene. Beilstein Journal of Organic Chemistry, 2019, 15, 1257-1261.	2.2	9
15	A New Member of the BN-Phenanthrene Family: Understanding the Role of the B—N Bond Position. Journal of Organic Chemistry, 2019, 84, 7113-7122.	3.2	23
16	Regiodivergent Electrophilic Cyclizations of Alkynylcyclobutanes for the Synthesis of Cyclobutane-Fused O-Heterocycles. Journal of Organic Chemistry, 2019, 84, 5712-5725.	3.2	13
17	Synthesis, Functionalization, and Optical Properties of 1,2-Dihydro-1-aza-2-boraphenanthrene and Several Highly Fluorescent Derivatives. Organic Letters, 2019, 21, 2550-2554.	4.6	27
18	Synthesis of functionalized helical BN-benzo[<i>c</i>]phenanthrenes. Chemical Communications, 2018, 54, 2467-2470.	4.1	39

Juan J Vaquero

#	Article	IF	CITATIONS
19	Dibenzopyridoimidazocinnolinium cations: a new family of light-up fluorescent DNA probes. Organic Chemistry Frontiers, 2018, 5, 1916-1927.	4.5	15
20	Î ³ -Carboline Synthesis by Heterocyclization of TosMIC Derivatives. Journal of Organic Chemistry, 2018, 83, 6623-6632.	3.2	17
21	C–H Functionalization of BN-Aromatics Promoted by Addition of Organolithium Compounds to the Boron Atom. Organic Letters, 2018, 20, 4902-4906.	4.6	22
22	Discovery of potent calpain inhibitors based on the azolo-imidazolidenone scaffold. European Journal of Medicinal Chemistry, 2018, 157, 946-959.	5.5	4
23	Azonia aromatic heterocycles as a new acceptor unit in D-Ï€-A + vs D-A + nonlinear optical chromophores. Dyes and Pigments, 2017, 144, 17-31.	3.7	11
24	Synthesis, Optical Properties, and Regioselective Functionalization of 4a-Aza-10a-boraphenanthrene. Organic Letters, 2017, 19, 3458-3461.	4.6	48
25	Imidazopyridinium cations: A new family of azonia aromatic heterocycles with applications as DNA intercalators. Dyes and Pigments, 2017, 138, 135-146.	3.7	13
26	Quinolizinium as a new fluorescent lysosomotropic probe. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 203-207.	2.2	22
27	Recent Advances in the Synthesis of Azonia Aromatic Heterocycles. Journal of Organic Chemistry, 2016, 81, 10126-10135.	3.2	78
28	Synthesis of 1-Substituted Isoquinolines by Heterocyclization of TosMIC Derivatives: Total Synthesis of Cassiarin A. Organic Letters, 2016, 18, 3378-3381.	4.6	21
29	Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring. Chemistry - A European Journal, 2015, 21, 18758-18763.	3.3	20
30	Azonia Aromatic Cations by Ring losing Metathesis: Synthesis of Azaquinolizinium Cations. European Journal of Organic Chemistry, 2015, 2015, 4214-4223.	2.4	16
31	Isoquinoline Synthesis by Heterocyclization of Tosylmethyl Isocyanide Derivatives: Total Synthesis of Mansouramycin B. Organic Letters, 2015, 17, 78-81.	4.6	32
32	Targeting DNA with small molecules: a comparative study of a library of azonia aromatic chromophores. Organic and Biomolecular Chemistry, 2015, 13, 527-538.	2.8	19
33	Nonlinear Emission of Quinolizinium-Based Dyes with Application in Fluorescence Lifetime Imaging. Journal of Physical Chemistry A, 2015, 119, 2351-2362.	2.5	33
34	Novel charged NLO chromophores based on quinolizinium acceptor units. Dyes and Pigments, 2014, 101, 116-121.	3.7	27
35	Efficient Synthesis of an Indoloquinolizinium Alkaloid Selective DNA-Binder by Ring-Closing Metathesis. Organic Letters, 2014, 16, 3464-3467.	4.6	23
36	Remote Aryl Cyanation via Isocyanide–Cyanide Rearrangement on Tosylmethyl Isocyanide Derivatives. Organic Letters, 2013, 15, 3388-3391.	4.6	20

Juan J Vaquero

#	Article	IF	CITATIONS
37	A cascade reaction of azolopyrimidines. Synthesis of unusual indole and azaindole derivatives. Chemical Communications, 2012, 48, 9171.	4.1	12
38	A V-shaped cationic dye for nonlinear optical bioimaging. Chemical Communications, 2011, 47, 7374.	4.1	64
39	Ringâ€Closing Metathesis Approach to Heteroaromatic Cations: Synthesis of Benzo[<i>a</i>]quinolizinium Salts. European Journal of Organic Chemistry, 2011, 2011, 1280-1290.	2.4	19
40	Application of Selective Palladiumâ€Mediated Functionalization of the Pyrido[3′,2′:4,5]pyrrolo[1,2â€ <i>c</i>]pyrimidine Heterocyclic System for the Total Synthesis of Variolin B and Deoxyvariolin B. European Journal of Organic Chemistry, 2010, 2010, 5607-5618.	2.4	19
41	Palladium-mediated C–N, C–C, and C–O functionalization of azolopyrimidines: a new total synthesis of variolin B. Tetrahedron Letters, 2008, 49, 4073-4077.	1.4	19
42	Heterocyclizations with Tosylmethyl Isocyanide Derivatives. A New Approach to Substituted Azolopyrimidines. Journal of Organic Chemistry, 2005, 70, 4879-4882.	3.2	24
43	Reaction of 2-Bromomethylazoles and TosMIC:  A Domino Process to Azolopyrimidines. Synthesis of Core Tricycle of the Variolins Alkaloids. Organic Letters, 2000, 2, 3253-3256.	4.6	43
44	Metalâ€Free Temperatureâ€Controlled Regiodivergent Borylative Cyclizations of Enynes: BCl3â€Promoted Skeletal Rearrangement. Angewandte Chemie, 0, , .	2.0	0