Ganapati Natarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4225165/publications.pdf

Version: 2024-02-01

29 1,449 19 28 papers citations h-index g-index

29 29 29 1255
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Gas phase ion chemistry of titanium–oxofullerene with ligated solvents. Physical Chemistry Chemical Physics, 2022, 24, 2332-2343.	1.3	2
2	A covalently linked dimer of [Ag25(DMBT)18]â^². Chemical Communications, 2019, 55, 5025-5028.	2.2	17
3	Rapid isotopic exchange in nanoparticles. Science Advances, 2019, 5, eaau7555.	4.7	21
4	Camouflaging Structural Diversity: Coâ€crystallization of Two Different Nanoparticles Having Different Cores But the Same Shell. Angewandte Chemie, 2019, 131, 195-200.	1.6	9
5	Camouflaging Structural Diversity: Coâ€crystallization of Two Different Nanoparticles Having Different Cores But the Same Shell. Angewandte Chemie - International Edition, 2019, 58, 189-194.	7.2	80
6	Metal–Ligand Interface in the Chemical Reactions of Ligand-Protected Noble Metal Clusters. Langmuir, 2019, 35, 11243-11254.	1.6	32
7	Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods. Angewandte Chemie, 2018, 130, 6632-6636.	1.6	10
8	Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods. Angewandte Chemie - International Edition, 2018, 57, 6522-6526.	7.2	57
9	Fullerene-Functionalized Monolayer-Protected Silver Clusters: [Ag ₂₉ (BDT) ₁₂ (C ₆₀) _{<i>n</i>}] _{]^{3–} (<i>n</i>) =)}) TjrEITQq1	1 0 9784314
10	A thirty-fold photoluminescence enhancement induced by secondary ligands in monolayer protected silver clusters. Nanoscale, 2018, 10, 20033-20042.	2.8	65
11	Isomerism in Supramolecular Adducts of Atomically Precise Nanoparticles. Journal of the American Chemical Society, 2018, 140, 13590-13593.	6.6	40
12	Detection of [Au ₂₅ (PET) ₁₈ (O ₂) _{<i>n</i>}] ^{\hat{a}'} (<i>n</i> = 1, 2, 3) Species by Mass Spectrometry. Journal of Physical Chemistry C, 2018, 122, 19455-19462.	1.5	16
13	Bent Keto Form of Curcumin, Preferential Stabilization of Enol by Piperine, and Isomers of Curcuminâ^©Cyclodextrin Complexes: Insights from Ion Mobility Mass Spectrometry. Analytical Chemistry, 2018, 90, 8776-8784.	3.2	15
14	Species-Specific Uptake of Arsenic on Confined Metastable 2-Line Ferrihydrite: A Combined Raman-X-Ray Photoelectron Spectroscopy Investigation of the Adsorption Mechanism. ACS Sustainable Chemistry and Engineering, 2018, 6, 9990-10000.	3.2	29
15	Manifestation of Geometric and Electronic Shell Structures of Metal Clusters in Intercluster Reactions. ACS Nano, 2017, 11, 6015-6023.	7.3	43
16	Au ₂₂ Ir ₃ (PET) ₁₈ : An Unusual Alloy Cluster through Intercluster Reaction. Journal of Physical Chemistry Letters, 2017, 8, 2787-2793.	2.1	64
17	Structureâ€"Reactivity Correlations in Metal Atom Substitutions of Monolayer-Protected Noble Metal Alloy Clusters. Journal of Physical Chemistry C, 2017, 121, 23224-23232.	1.5	19
	Interparticle Reactions: An Emerging Direction in Nanomaterials Chemistry. Accounts of Chemical		

#	Article	IF	CITATIONS
19	[Au ₂₅ (SR) ₁₈] ₂ ^{2â°'} : a noble metal cluster dimer in the gas phase. Chemical Communications, 2016, 52, 8397-8400.	2.2	56
20	Structure-conserving spontaneous transformations between nanoparticles. Nature Communications, 2016, 7, 13447.	5.8	106
21	Intercluster Reactions between Au ₂₅ (SR) ₁₈ and Ag ₄₄ (SR) ₃₀ . Journal of the American Chemical Society, 2016, 138, 140-148.	6.6	154
22	Possible isomers in ligand protected Ag $<$ sub $>$ 11 $<$ /sub $>$ cluster ions identified by ion mobility mass spectrometry and fragmented by surface induced dissociation. Chemical Communications, 2016, 52, 3805-3808.	2.2	39
23	A Unified Framework for Understanding the Structure and Modifications of Atomically Precise Monolayer Protected Gold Clusters. Journal of Physical Chemistry C, 2015, 119, 27768-27785.	1.5	53
24	Supramolecular Functionalization and Concomitant Enhancement in Properties of Au ₂₅ Clusters. ACS Nano, 2014, 8, 139-152.	7.3	94
25	Probing Molecular Solids with Low-Energy Ions. Annual Review of Analytical Chemistry, 2013, 6, 97-118.	2.8	6
26	New Type of Charged Defect in Amorphous Chalcogenides. Physical Review Letters, 2005, 94, 086401.	2.9	22
27	Propagation, hybridization and localization of vibrational excitations in disordered materials. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 197-208.	0.6	7
28	Origin of the Boson Peak in Systems with Lattice Disorder. Physical Review Letters, 2001, 86, 1255-1258.	2.9	259
29	Vibrational dynamics in disordered structures studied by the coherent potential approximation. Journal of Non-Crystalline Solids, 2001, 293-295, 333-338.	1.5	0