Cees J N Buisman

List of Publications by Citations

Source: https://exaly.com/author-pdf/4224903/cees-j-n-buisman-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 6,627 39 63 g-index

63 7,440 8.1 5.99 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
63	Towards practical implementation of bioelectrochemical wastewater treatment. <i>Trends in Biotechnology</i> , 2008 , 26, 450-9	15.1	921
62	Hydrogen production with a microbial biocathode. <i>Environmental Science & Environmental Science & Envi</i>	10.3	391
61	Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. <i>Water Research</i> , 2007 , 41, 1984-94	12.5	315
60	Ammonium recovery and energy production from urine by a microbial fuel cell. <i>Water Research</i> , 2012 , 46, 2627-36	12.5	306
59	Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	281
58	A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. <i>Environmental Science & Environmental </i>	10.3	254
57	Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. <i>Environmental Science & Environmental Science & Environme</i>	10.3	232
56	Microbial electrolysis cell with a microbial biocathode. <i>Bioelectrochemistry</i> , 2010 , 78, 39-43	5.6	218
55	Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. <i>Bioresource Technology</i> , 2015 , 195, 14-24	11	207
54	Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 3612-3620	6.7	199
53	Bioelectrochemical systems: an outlook for practical applications. <i>ChemSusChem</i> , 2012 , 5, 1012-9	8.3	192
52	Microbial solar cells: applying photosynthetic and electrochemically active organisms. <i>Trends in Biotechnology</i> , 2011 , 29, 41-9	15.1	181
51	Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. <i>Electrochimica Acta</i> , 2008 , 53, 5697-5703	6.7	167
50	Analysis and improvement of a scaled-up and stacked microbial fuel cell. <i>Environmental Science & Environmental Science</i>	10.3	165
49	Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. <i>International Journal of Energy Research</i> , 2012 , 36, 809-819	4.5	147
48	Bioelectrochemical Power-to-Gas: State of the Art and Future Perspectives. <i>Trends in Biotechnology</i> , 2016 , 34, 879-894	15.1	135
47	Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. <i>Water Research</i> , 2008 , 42, 4059-66	12.5	129

(2016-2012)

46	Capacitive bioanodes enable renewable energy storage in microbial fuel cells. <i>Environmental Science & Environmental Science &</i>	10.3	128
45	Bioelectrochemical Production of Caproate and Caprylate from Acetate by Mixed Cultures. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 513-518	8.3	123
44	Source-separated urine opens golden opportunities for microbial electrochemical technologies. <i>Trends in Biotechnology</i> , 2015 , 33, 214-20	15.1	121
43	Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. <i>Applied Energy</i> , 2014 , 116, 223-229	10.7	120
42	Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. <i>Bioresource Technology</i> , 2011 , 102, 11172-6	11	111
41	Butler-Volmer-Monod model for describing bio-anode polarization curves. <i>Bioresource Technology</i> , 2011 , 102, 381-7	11	105
40	Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell. <i>Journal of Power Sources</i> , 2017 , 356, 491-499	8.9	97
39	Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 9655-9661	6.7	96
38	Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. <i>Bioresource Technology</i> , 2013 , 136, 735-8	11	95
37	Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density. <i>Frontiers in Energy Research</i> , 2018 , 6,	3.8	93
36	Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. <i>Journal of Chemical Technology and Biotechnology</i> , 2015 , 90, 963-970	3.5	77
35	Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system. <i>Archaea</i> , 2013 , 2013, 481784	2	76
34	Controlling Ethanol Use in Chain Elongation by CO Loading Rate. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 1496-1505	10.3	71
33	Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell. <i>Environmental Science & Environmental &</i>	10.3	61
32	Continuous Long-Term Bioelectrochemical Chain Elongation to Butyrate. <i>ChemElectroChem</i> , 2017 , 4, 386-395	4.3	60
31	Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	56
30	Bioelectrochemical conversion of CO to chemicals: CO as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. <i>Faraday Discussions</i> , 2017 , 202, 433-449	3.6	55
29	Performance of single carbon granules as perspective for larger scale capacitive bioanodes. <i>Journal of Power Sources</i> , 2016 , 325, 690-696	8.9	53

28	Influence of the thickness of the capacitive layer on the performance of bioanodes in Microbial Fuel Cells. <i>Journal of Power Sources</i> , 2013 , 243, 611-616	8.9	51
27	Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation. <i>Biomass and Bioenergy</i> , 2016 , 93, 201-208	5.3	45
26	Monophyletic group of unclassified Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode. <i>Bioelectrochemistry</i> , 2015 , 106, 167-76	5.6	42
25	Low Substrate Loading Limits Methanogenesis and Leads to High Coulombic Efficiency in Bioelectrochemical Systems. <i>Microorganisms</i> , 2016 , 4,	4.9	42
24	Heat-Treated Stainless Steel Felt as a New Cathode Material in a Methane-Producing Bioelectrochemical System. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 11346-11353	8.3	39
23	Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems. <i>Frontiers in Bioengineering and Biotechnology</i> , 2018 , 6, 78	5.8	35
22	Energy Efficient Phosphorus Recovery by Microbial Electrolysis Cell Induced Calcium Phosphate Precipitation. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8860-8867	8.3	33
21	Calcium addition to increase the production of phosphate granules in anaerobic treatment of black water. <i>Water Research</i> , 2018 , 130, 333-342	12.5	32
20	Granular sludge formation and characterization in a chain elongation process. <i>Process Biochemistry</i> , 2016 , 51, 1594-1598	4.8	31
19	Hydrogen as electron donor for copper removal in bioelectrochemical systems. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 5758-5764	6.7	31
18	Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: Steering with CO2 loading rate and hydraulic retention time. <i>Bioresource Technology Reports</i> , 2019 , 7, 100284	4.1	30
17	Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	30
16	Reduction of pH buffer requirement in bioelectrochemical systems. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 8259-63	10.3	28
15	Microbial Rechargeable Battery: Energy Storage and Recovery through Acetate. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 144-149	11	22
14	Electrochemical and microbiological characterization of single carbon granules in a multi-anode microbial fuel cell. <i>Journal of Power Sources</i> , 2019 , 435, 126514	8.9	20
13	Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material for Spartina anglica Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, and Spatial Microbial Community Diversity. <i>Water (Switzerland)</i> , 2019 , 11, 1810	3	16
12	In situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomography. <i>ChemSusChem</i> , 2018 , 11, 2171-2178	8.3	16
11	The granular capacitive moving bed reactor for the scale up of bioanodes. <i>Journal of Chemical Technology and Biotechnology</i> , 2019 , 94, 2738-2748	3.5	11

LIST OF PUBLICATIONS

10	Competition of electrogens with methanogens for hydrogen in bioanodes. <i>Water Research</i> , 2020 , 170, 115292	12.5	9
9	Bioelectrochemical Chain Elongation of Short-Chain Fatty Acids Creates Steering Opportunities for Selective Formation of n-Butyrate, n-Valerate or n-Caproate. <i>ChemistrySelect</i> , 2020 , 5, 9127-9133	1.8	7
8	Comparison of Two Sustainable Counter Electrodes for Energy Storage in the Microbial Rechargeable Battery. <i>ChemElectroChem</i> , 2019 , 6, 2464-2473	4.3	6
7	Water-Based Synthesis of Hydrophobic Ionic Liquids [N][oleate] and [P][oleate] and their Bioprocess Compatibility. <i>ChemistryOpen</i> , 2018 , 7, 878-884	2.3	4
6	Making the best use of capacitive current: Comparison between fixed and moving granular bioanodes. <i>Journal of Power Sources</i> , 2021 , 489, 229453	8.9	3
5	Reactor microbiome enriches vegetable oil with n-caproate and n-caprylate for potential functionalized feed additive production via extractive lactate-based chain elongation. <i>Biotechnology for Biofuels</i> , 2021 , 14, 232	7.8	3
4	Improving the discharge of capacitive granules in a moving bed reactor. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105556	6.8	2
3	Cyclic Voltammetry is Invasive on Microbial Electrosynthesis. <i>ChemElectroChem</i> , 2021 , 8, 3384-3396	4.3	1
2	Methane Production at Biocathodes 2020 , 129-159		0
1	Bio-electrochemical degradability of prospective wastewaters to determine their ammonium recovery potential. <i>Sustainable Energy Technologies and Assessments</i> , 2021 , 47, 101423	4.7	