
## Qixin Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4224711/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identification and characterization of QTL for spike morphological traits, plant height and heading<br>date derived from the D genome of natural and resynthetic allohexaploid wheat. Theoretical and<br>Applied Genetics, 2022, 135, 389-403. | 1.8 | 19        |
| 2  | Stress granuleâ€associated TaMBF1c confers thermotolerance through regulating specific mRNA<br>translation in wheat ( <i>Triticum aestivum</i> ). New Phytologist, 2022, 233, 1719-1731.                                                       | 3.5 | 31        |
| 3  | A single nucleotide deletion in the third exon of <i>FTâ€Ð1</i> increases the spikelet number and delays<br>heading date in wheat ( <i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2022, 20, 920-933.                              | 4.1 | 35        |
| 4  | ggComp enables dissection of germplasm resources and construction of a multiscale germplasm network in wheat. Plant Physiology, 2022, 188, 1950-1965.                                                                                          | 2.3 | 13        |
| 5  | Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. Theoretical and Applied Genetics, 2022, 135, 1867-1877.                                                              | 1.8 | 8         |
| 6  | An Improved Inoculation Method to Detect Wheat and Barley Genotypes for Resistance to Fusarium<br>Crown Rot. Plant Disease, 2022, 106, 1122-1127.                                                                                              | 0.7 | 5         |
| 7  | Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of agronomic traits. Journal of Integrative Plant Biology, 2022, 64, 536-563.                                                                         | 4.1 | 26        |
| 8  | The genetic and molecular basis for improving heat stress tolerance in wheat. ABIOTECH, 2022, 3, 25-39.                                                                                                                                        | 1.8 | 3         |
| 9  | <i>Heat Stress Tolerance 2</i> confers basal heat stress tolerance in allohexaploid wheat<br>( <i>Triticum aestivum</i> L.). Journal of Experimental Botany, 2022, 73, 6600-6614.                                                              | 2.4 | 6         |
| 10 | Histone acetyltransferase <scp>TaHAG1</scp> interacts with <scp>TaPLATZ5</scp> to activate<br><i>TaPAD4</i> expression and positively contributes to powdery mildew resistance in wheat. New<br>Phytologist, 2022, 236, 590-607.               | 3.5 | 16        |
| 11 | Histone acetyltransferase <scp>TaHAG1</scp> interacts with <scp>TaNACL</scp> to promote heat stress tolerance in wheat. Plant Biotechnology Journal, 2022, 20, 1645-1647.                                                                      | 4.1 | 10        |
| 12 | Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.)<br>under two sowing conditions. Theoretical and Applied Genetics, 2021, 134, 399-418.                                                       | 1.8 | 22        |
| 13 | Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments. Theoretical and Applied Genetics, 2021, 134, 143-157.                                                | 1.8 | 36        |
| 14 | Phenotypic characterization of the glossy1 mutant and fine mapping of GLOSSY1 in common wheat<br>(Triticum aestivum L.). Theoretical and Applied Genetics, 2021, 134, 835-847.                                                                 | 1.8 | 6         |
| 15 | The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell, 2021, 33, 603-622.                                                              | 3.1 | 88        |
| 16 | Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta, 2021, 253, 44.                                                                                                            | 1.6 | 26        |
| 17 | The Transcriptional and Splicing Changes Caused by Hybridization Can Be Globally Recovered by<br>Genome Doubling during Allopolyploidization. Molecular Biology and Evolution, 2021, 38, 2513-2519.                                            | 3.5 | 10        |
| 18 | Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of<br>hexaploid wheat. Plant Physiology, 2021, 186, 1951-1969.                                                                                       | 2.3 | 69        |

| #  | Article                                                                                                                                                                                                                                    | IF                | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 19 | Fine mapping of a powdery mildew resistance gene MlIW39 derived from wild emmer wheat (Triticum) Tj ETQq1                                                                                                                                  | 1 0.784314<br>1.8 | 4 ggBT /Over |
| 20 | <i>&gt;FRIZZY PANICLE</i> defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat. New Phytologist, 2021, 231, 814-833.                                                               | 3.5               | 41           |
| 21 | Fine Mapping of the Leaf Rust Resistance Gene Lr65 in Spelt Wheat â€~Altgold'. Frontiers in Plant Science,<br>2021, 12, 666921.                                                                                                            | 1.7               | 7            |
| 22 | The decreased expression of GW2 homologous genes contributed to the increased grain width and<br>thousand‑grain weight in wheat-Dasypyrum villosum 6VS·6DL translocation lines. Theoretical and<br>Applied Genetics, 2021, 134, 3873-3894. | 1.8               | 7            |
| 23 | A Major Quantitative Trait Loci Cluster Controlling Three Components of Yield and Plant Height<br>Identified on Chromosome 4B of Common Wheat. Frontiers in Plant Science, 2021, 12, 799520.                                               | 1.7               | 9            |
| 24 | Identification and Validation of Stable Quantitative Trait Loci for SDS-Sedimentation Volume in Common Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12, 747775.                                                         | 1.7               | 4            |
| 25 | Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat<br>(Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133, 149-162.                                                       | 1.8               | 42           |
| 26 | Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through<br><scp>OPR</scp> 3 and jasmonate signalling pathway. Plant Biotechnology Journal, 2020, 18, 1109-1111.                                      | 4.1               | 36           |
| 27 | A Collinearity-Incorporating Homology Inference Strategy for Connecting Emerging Assemblies in the<br>Triticeae Tribe as a Pilot Practice in the Plant Pangenomic Era. Molecular Plant, 2020, 13, 1694-1708.                               | 3.9               | 126          |
| 28 | Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nature Communications, 2020, 11, 5085.                                                                                                                                  | 5.8               | 104          |
| 29 | Changes in Alternative Splicing in Response to Domestication and Polyploidization in Wheat. Plant<br>Physiology, 2020, 184, 1955-1968.                                                                                                     | 2.3               | 34           |
| 30 | Dissection and validation of a QTL cluster linked to Rht-B1 locus controlling grain weight in common wheat (Triticum aestivum L.) using near-isogenic lines. Theoretical and Applied Genetics, 2020, 133, 2639-2653.                       | 1.8               | 26           |
| 31 | SnpHub: an easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat. GigaScience, 2020, 9, .                                                                | 3.3               | 43           |
| 32 | A Single Amino Acid Substitution in STKc_GSK3 Kinase Conferring Semispherical Grains and Its<br>Implications for the Origin of <i>Triticumsphaerococcum</i> . Plant Cell, 2020, 32, 923-934.                                               | 3.1               | 78           |
| 33 | The semidominant mutation w5 impairs epicuticular wax deposition in common wheat (Triticum) Tj ETQq1 1 0.78                                                                                                                                | 4314 rgBT<br>1.8  | 0verlock     |
| 34 | Glycerol-Induced Powdery Mildew Resistance in Wheat by Regulating Plant Fatty Acid Metabolism,<br>Plant Hormones Cross-Talk, and Pathogenesis-Related Genes. International Journal of Molecular<br>Sciences, 2020, 21, 673.                | 1.8               | 28           |
| 35 | Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.).<br>Theoretical and Applied Genetics, 2020, 133, 1825-1838.                                                                            | 1.8               | 53           |
| 36 | Characterization of a major quantitative trait locus on the short arm of chromosome 4B for spike<br>number per unit area in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020,<br>133, 2259-2269.                | 1.8               | 12           |

| #  | Article                                                                                                                                                                                                                                                              | IF                 | CITATIONS            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 37 | Importance of small RNA in plant seed germination. , 2020, , 117-123.                                                                                                                                                                                                |                    | 1                    |
| 38 | Histone acetyltransferase <scp>GCN</scp> 5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant Journal, 2019, 97, 587-602.                                                                   | 2.8                | 99                   |
| 39 | Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biology, 2019, 20, 136.                                                                                                                             | 3.8                | 148                  |
| 40 | High Molecular Weight Glutenin Subunits 1Bx7 and 1By9 Encoded by <i>Glu-B1</i> Locus Affect Wheat<br>Dough Properties and Sponge Cake Quality. Journal of Agricultural and Food Chemistry, 2019, 67,<br>11796-11804.                                                 | 2.4                | 23                   |
| 41 | Wheat <i>TaSPL8</i> Modulates Leaf Angle Through Auxin and Brassinosteroid Signaling. Plant<br>Physiology, 2019, 181, 179-194.                                                                                                                                       | 2.3                | 69                   |
| 42 | Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome<br>4AL in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2019, 132, 2367-2379.                                                            | 1.8                | 32                   |
| 43 | Wheat Responses and Tolerance to High Temperature. , 2019, , 139-147.                                                                                                                                                                                                |                    | 5                    |
| 44 | Hybrid sequencing reveals insight into heat sensing and signaling of bread wheat. Plant Journal, 2019,<br>98, 1015-1032.                                                                                                                                             | 2.8                | 73                   |
| 45 | Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length<br>linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.).<br>Theoretical and Applied Genetics, 2019, 132, 1815-1831. | 1.8                | 22                   |
| 46 | Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var.) Tj ETQq0 0 0<br>761-770.                                                                                                                                                  | rgBT /Overl<br>2.3 | ock 10 Tf 50 3<br>57 |
| 47 | Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization. Plant Cell, 2018, 30, 37-47.                                                                                                                                                          | 3.1                | 26                   |
| 48 | Wheat miR9678 Affects Seed Germination by Generating Phased siRNAs and Modulating Abscisic Acid/Gibberellin Signaling. Plant Cell, 2018, 30, 796-814.                                                                                                                | 3.1                | 75                   |
| 49 | Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. Crop Journal, 2018, 6, 32-41.                                                                                                                  | 2.3                | 103                  |
| 50 | Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat ( <i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2018, 16, 714-726.                                                                        | 4.1                | 161                  |
| 51 | Overexpression of the Wheat (Triticum aestivum L.) TaPEPKR2 Gene Enhances Heat and Dehydration Tolerance in Both Wheat and Arabidopsis. Frontiers in Plant Science, 2018, 9, 1710.                                                                                   | 1.7                | 37                   |
| 52 | Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length<br>linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.).<br>Theoretical and Applied Genetics, 2018, 131, 2621-2637. | 1.8                | 51                   |
| 53 | Unconventional splicing of wheat TabZIP60 confers heat tolerance in transgenic Arabidopsis. Plant<br>Science, 2018, 274, 252-260.                                                                                                                                    | 1.7                | 33                   |
| 54 | Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat:<br>evidence from phenotype evolution and gene expression. Plant Journal, 2018, 95, 976-987.                                                                      | 2.8                | 35                   |

| #  | Article                                                                                                                                                                                                                               | IF                 | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 55 | Simultaneous Transfer of Leaf Rust and Powdery Mildew Resistance Genes from Hexaploid Triticale<br>Cultivar Sorento into Bread Wheat. Frontiers in Plant Science, 2018, 9, 85.                                                        | 1.7                | 19                  |
| 56 | Global QTL Analysis Identifies Genomic Regions on Chromosomes 4A and 4B Harboring Stable Loci for<br>Yield-Related Traits Across Different Environments in Wheat (Triticum aestivum L.). Frontiers in Plant<br>Science, 2018, 9, 529. | 1.7                | 132                 |
| 57 | Ta <scp>WRKY</scp> 51 promotes lateral root formation through negative regulation of ethylene<br>biosynthesis in wheat ( <i>Triticum aestivum</i> L.). Plant Journal, 2018, 96, 372-388.                                              | 2.8                | 55                  |
| 58 | Metabolic adaptation of wheat grains contributes to a stable filling rate under heat stress. Journal of Experimental Botany, 2018, 69, 5531-5545.                                                                                     | 2.4                | 61                  |
| 59 | Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology, 2017, 17, 14.                                                      | 1.6                | 116                 |
| 60 | Ectopic expression of TaOEP16-2-5B , a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants. Plant Science, 2017, 258, 1-11.                                        | 1.7                | 42                  |
| 61 | Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.).<br>Journal of Plant Biology, 2017, 60, 57-65.                                                                                       | 0.9                | 39                  |
| 62 | The E3 Ligase TaSAP5 Alters Drought Stress Responses by Promoting the Degradation of DRIP Proteins.<br>Plant Physiology, 2017, 175, 1878-1892.                                                                                        | 2.3                | 64                  |
| 63 | Altered expression of the TaRSL2 gene contributed to variation in root hair length during allopolyploid wheat evolution. Planta, 2017, 246, 1019-1028.                                                                                | 1.6                | 14                  |
| 64 | Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in <i>Arabidopsis thaliana</i> . Plant Cell, 2017, 29, 1952-1969.                                                                        | 3.1                | 43                  |
| 65 | Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 2017, 551, 498-502.                                                                                                                                | 13.7               | 563                 |
| 66 | Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum) Tj ETQq0 0 0 rgE                                                                                                                      | BT /Overloc<br>1.6 | ck 10 Tf 50 3<br>17 |
| 67 | Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes. Journal of Genetics and Genomics, 2017, 44, 51-61.                                                           | 1.7                | 25                  |
| 68 | Molecular and Functional Characterization of Wheat ARGOS Genes Influencing Plant Growth and Stress Tolerance. Frontiers in Plant Science, 2017, 8, 170.                                                                               | 1.7                | 20                  |
| 69 | Comparative Proteomic Analysis of Flag Leaves Reveals New Insight into Wheat Heat Adaptation.<br>Frontiers in Plant Science, 2017, 8, 1086.                                                                                           | 1.7                | 41                  |
| 70 | Identification of QTL for Grain Size and Shape on the D Genome of Natural and Synthetic<br>Allohexaploid Wheats with Near-Identical AABB Genomes. Frontiers in Plant Science, 2017, 8, 1705.                                          | 1.7                | 49                  |
| 71 | Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biology, 2017, 17, 208.                                                                                                                                | 1.6                | 75                  |
|    |                                                                                                                                                                                                                                       |                    |                     |

72Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and<br/>Regulatory Mechanism during Seed Development. Plant Cell, 2016, 28, 629-645.3.149

| #  | Article                                                                                                                                                                                                      | IF         | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| 73 | Up-regulating the abscisic acid inactivation geneZmABA8ox1bcontributes to seed germination heterosis by promoting cell expansion. Journal of Experimental Botany, 2016, 67, 2889-2900.                       | 2.4        | 17          |
| 74 | Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. BMC Genetics, 2016, 17, 82.                                    | 2.7        | 6           |
| 75 | Identification and mapping of MLIW30, a novel powdery mildew resistance gene derived from wild emmer wheat. Molecular Breeding, 2016, 36, 1.                                                                 | 1.0        | 13          |
| 76 | Ectopic expression of the Vigna eylindrica ferritin gene enhanced heat tolerance in transgenic wheat<br>(Triticum aestivum L.). Euphytica, 2016, 209, 23-30.                                                 | 0.6        | 3           |
| 77 | Altered expression of <i>Ta<scp>RSL</scp>4</i> gene by genome interplay shapes root hair length in allopolyploid wheat. New Phytologist, 2016, 209, 721-732.                                                 | 3.5        | 71          |
| 78 | Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum). Theoretical and Applied Genetics, 2016, 129, 577-589.                                                                  | 1.8        | 71          |
| 79 | Proteomic patterns associated with heterosis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 908-915.                                                                                  | 1.1        | 32          |
| 80 | Ectopic expression of a maize hybrid up-regulated gene , ErbB- 3 binding Protein 1 ( ZmEBP1 ), increases organ size by promoting cell proliferation in Arabidopsis. Plant Science, 2016, 243, 23-34.         | 1.7        | 20          |
| 81 | Characterization of Small RNAs Derived from tRNAs, rRNAs and snoRNAs and Their Response to Heat<br>Stress in Wheat Seedlings. PLoS ONE, 2016, 11, e0150933.                                                  | 1.1        | 54          |
| 82 | Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.). BMC Genetics, 2015, 16, 127.                                                  | 2.7        | 35          |
| 83 | Histone acetyltransferase <scp>GCN</scp> 5 is essential for heat stressâ€responsive gene activation and thermotolerance in Arabidopsis. Plant Journal, 2015, 84, 1178-1191.                                  | 2.8        | 126         |
| 84 | The wheat transcription factor Ta <scp>GAM</scp> yb recruits histone acetyltransferase and activates<br>the expression of a highâ€molecularâ€weight glutenin subunit gene. Plant Journal, 2015, 84, 347-359. | 2.8        | 46          |
| 85 | Temporal small RNA transcriptome profiling unraveled partitioned miRNA expression in developing maize endosperms between reciprocal crosses. Frontiers in Plant Science, 2015, 6, 744.                       | 1.7        | 14          |
| 86 | Temporal transcriptome profiling reveals expression partitioning of homeologous genes<br>contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biology,<br>2015, 15, 152.  | 1.6        | 343         |
| 87 | Mapping QTLs associated with root traits using two different populations in wheat (Triticum) Tj ETQq1 1 0.784                                                                                                | 314 rgBT / | Overlock 10 |
| 88 | Genetic and physical mapping of powdery mildew resistance gene MIHLT in Chinese wheat landrace<br>Hulutou. Theoretical and Applied Genetics, 2015, 128, 365-373.                                             | 1.8        | 48          |
| 89 | Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) Multiprotein<br>Bridging Factor, confers heat tolerance in both yeast and rice. Plant Molecular Biology, 2015, 87, 31-45.   | 2.0        | 67          |
| 90 | Ectopic Expression of a Maize Hybrid Down-Regulated Gene ZmARF25 Decreases Organ Size by Affecting<br>Cellular Proliferation in Arabidopsis. PLoS ONE, 2014, 9, e94830.                                      | 1.1        | 12          |

| #   | Article                                                                                                                                                                                                                  | IF         | CITATIONS      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 91  | Fine Physical and Genetic Mapping of Powdery Mildew Resistance Gene MlIW172 Originating from Wild<br>Emmer (Triticum dicoccoides). PLoS ONE, 2014, 9, e100160.                                                           | 1.1        | 36             |
| 92  | Molecular mapping of a recessive powdery mildew resistance gene in spelt wheat cultivar Hubel.<br>Molecular Breeding, 2014, 34, 491-500.                                                                                 | 1.0        | 17             |
| 93  | Maize ( <i><scp>Z</scp>ea mays</i> <scp>L</scp> .) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines. Proteomics, 2014, 14, 1071-1087.                        | 1.3        | 24             |
| 94  | Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theoretical and Applied Genetics, 2014, 127, 2415-2432.                                                 | 1.8        | 97             |
| 95  | A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis. Gene, 2014, 550, 18-26.                                                                         | 1.0        | 49             |
| 96  | Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance gene Pm41. Theoretical and Applied Genetics, 2014, 127, 1741-1751.                                                 | 1.8        | 32             |
| 97  | Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant<br>Biology, 2014, 14, 142.                                                                                                 | 1.6        | 120            |
| 98  | TaWRKY68 responses to biotic stresses are revealed by the orthologous genes from major cereals.<br>Genetics and Molecular Biology, 2014, 37, 73-80.                                                                      | 0.6        | 5              |
| 99  | Epigenetic modification contributes to the expression divergence of three<br><i><scp>T</scp>a<scp>EXPA</scp>1</i> homoeologs in hexaploid wheat ( <i><scp>T</scp>riticum) Tj ETQq1</i>                                   | 10.7884314 | 4 rg&T /Overld |
| 100 | Widespread, abundant, and diverse TE-associated siRNAs in developing wheat grain. Gene, 2013, 522, 1-7.                                                                                                                  | 1.0        | 23             |
| 101 | Overexpression of Three TaEXPA1 Homoeologous Genes with Distinct Expression Divergence in<br>Hexaploid Wheat Exhibit Functional Retention in Arabidopsis. PLoS ONE, 2013, 8, e63667.                                     | 1.1        | 16             |
| 102 | Comparative High-Resolution Mapping of the Wax Inhibitors Iw1 and Iw2 in Hexaploid Wheat. PLoS ONE, 2013, 8, e84691.                                                                                                     | 1.1        | 27             |
| 103 | Comparative Proteomic Analysis of Embryos between a Maize Hybrid and Its Parental Lines during Early<br>Stages of Seed Germination. PLoS ONE, 2013, 8, e65867.                                                           | 1.1        | 71             |
| 104 | Exploration of small non coding RNAs in wheat (Triticum aestivum L.). Plant Molecular Biology, 2012,<br>80, 67-73.                                                                                                       | 2.0        | 20             |
| 105 | Transcriptome Comparison of Susceptible and Resistant Wheat in Response to Powdery Mildew<br>Infection. Genomics, Proteomics and Bioinformatics, 2012, 10, 94-106.                                                       | 3.0        | 90             |
| 106 | Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer<br>(Triticum turgidum var. dicoccoides) on chromosome 2BS. Theoretical and Applied Genetics, 2012, 124,<br>1041-1049. | 1.8        | 47             |
| 107 | Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Molecular Breeding, 2012, 29, 399-412.                                   | 1.0        | 40             |
| 108 | TamiR159 Directed Wheat TaGAMYB Cleavage and Its Involvement in Anther Development and Heat<br>Response. PLoS ONE, 2012, 7, e48445.                                                                                      | 1.1        | 158            |

| #   | Article                                                                                                                                                                                                                    | IF                  | CITATIONS           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| 109 | Expression divergence of TaMBD2 homoeologous genes encoding methyl CpG-binding domain proteins<br>in wheat (Triticum aestivum L.). Gene, 2011, 471, 13-18.                                                                 | 1.0                 | 26                  |
| 110 | Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene, 2011, 482, 34-42.                                                              | 1.0                 | 47                  |
| 111 | Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between<br>common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Science Bulletin, 2011, 56,<br>1897-1903.       | 1.7                 | 19                  |
| 112 | Identification and characterization of wheat long non-protein coding RNAs responsive to powdery<br>mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biology,<br>2011, 11, 61.   | 1.6                 | 347                 |
| 113 | Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics, 2011, 12, 178.                                                                                      | 1.2                 | 189                 |
| 114 | Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232<br>originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum) Tj ETQq0 0 0 rg              | BT1 <b>/0</b> verlo | cksହ0 Tf 50 ട്ര     |
| 115 | Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Functional and<br>Integrative Genomics, 2010, 10, 187-190.                                                                             | 1.4                 | 69                  |
| 116 | Identification and molecular mapping of a leaf rust resistance gene in spelt wheat landrace Altgold.<br>Euphytica, 2010, 174, 371-375.                                                                                     | 0.6                 | 13                  |
| 117 | Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 2010, 10, 123.                                                                     | 1.6                 | 459                 |
| 118 | Identification and characterization of a novel hybrid upregulated long non-protein coding RNA in maize seedling roots. Plant Science, 2010, 179, 356-363.                                                                  | 1.7                 | 5                   |
| 119 | The relationship of differential expression of genes in GA biosynthesis and response pathways with heterosis of plant height in a wheat diallel cross. Science Bulletin, 2009, 54, 3029-3034.                              | 1.7                 | 6                   |
| 120 | Identification of differentially expressed proteins between hybrid and parents in wheat (Triticum) Tj ETQq0 0 0 rg                                                                                                         | BT_/Overlc<br>1.8   | ock 10 Tf 50 3      |
| 121 | Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene<br>derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 2009,<br>119, 223-230. | 1.8                 | 141                 |
| 122 | Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 2009, 119, 531-539.                | 1.8                 | 85                  |
| 123 | Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457, 327-331.                                                                                                                | 13.7                | 598                 |
| 124 | Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum) Tj ETQq0 0 0 r                                                                                                             | gBT /Overl<br>0.6   | ock 10 Tf 50        |
| 125 | Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum) Tj ETQq1 1 0.784                                                                                                           | -314 rgBT<br>1.2    | /Overlock 10<br>290 |
|     |                                                                                                                                                                                                                            |                     |                     |

126 Genomic and genic sequence variation in synthetic hexaploid wheat (AABBDD) as compared to their parental species. Progress in Natural Science: Materials International, 2008, 18, 533-538.

1.8 8

| #   | Article                                                                                                                                                          | IF               | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 127 | Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum) Tj ETQq1 1 C                                                  | .784314 r<br>1.8 | gðð /Overloo |
| 128 | Isolation and comparative expression analysis of six MBD genes in wheat. Biochimica Et Biophysica<br>Acta - Gene Regulatory Mechanisms, 2008, 1779, 90-98.       | 0.9              | 12           |
| 129 | Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology, 2007, 8, R96.                                                       | 13.9             | 330          |
| 130 | Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genetics, 2007, 8, 40.                                                           | 2.7              | 65           |
| 131 | Wheat ( <b><i>Triticum aestivum</i></b> L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 2007, 7, 3538-3557. | 1.3              | 63           |
| 132 | Molecular mapping of a dominant non-glaucousness gene from synthetic hexaploid wheat (Triticum) Tj ETQq0 0 (                                                     | ) rgBT /Ov       | erlock 10 Tf |

|  | 133 | Molecular identification of Pm12-carrying introgression lines in wheat using genomic and EST-SSR markers. Euphytica, 2007, 158, 95-102. | 0.6 | 20 |  |
|--|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
|--|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|

## 134 Isolation and characterization of 15 genes encoding ribosomal proteins in wheat (Triticum aestivum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

| 135 | Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Molecular Biology, 2006, 63, 73-84.                                  | 2.0 | 90  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 136 | Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113, 1283-1294.                     | 1.8 | 57  |
| 137 | Identification of RAPD Markers and Development of SCAR Markers Linked to a Powdery Mildew<br>Resistance Gene, and their Location on Chromosome in Wheat Cultivar Brock. Plant Production<br>Science, 2005, 8, 578-585. | 0.9 | 6   |
| 138 | Isolation and characterization of 18 genes encoding α- and β-expansins in wheat (Triticum aestivum L.).<br>Molecular Genetics and Genomics, 2005, 274, 548-556.                                                        | 1.0 | 49  |
| 139 | Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Molecular Biology, 2005, 58, 367-384.                          | 2.0 | 73  |
| 140 | Identification of Random Amplified Polymorphic DNA and Simple Sequence Repeat Markers Linked to<br>Powdery Mildew Resistance in Common Wheat Cultivar Brock. Plant Production Science, 2004, 7,<br>319-323.            | 0.9 | 8   |
| 141 | Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Science, 2004, 166, 651-657.                                  | 1.7 | 68  |
| 142 | Title is missing!. Euphytica, 2002, 123, 21-29.                                                                                                                                                                        | 0.6 | 138 |
| 143 | Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves.<br>Euphytica, 1999, 106, 117-123.                                                                                    | 0.6 | 32  |
|     |                                                                                                                                                                                                                        |     |     |

144 Title is missing!. Euphytica, 1998, 99, 205-211.

0.6 48