
Herbert Leonel de Matos Guedes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4224538/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Scientific Reports, 2015, 5, 8008.	3.3	110
2	PCR Assay for Identification of Histoplasma capsulatum Based on the Nucleotide Sequence of the M Antigen. Journal of Clinical Microbiology, 2003, 41, 535-539.	3.9	70
3	Binding of extracellular matrix proteins to Paracoccidioides brasiliensis. Microbes and Infection, 2006, 8, 1550-1559.	1.9	66
4	Role of Trypanosoma cruzi Trans-sialidase on the Escape from Host Immune Surveillance. Frontiers in Microbiology, 2016, 7, 348.	3.5	52
5	Immunomodulatory Role of Capsular Polysaccharides Constituents of Cryptococcus neoformans. Frontiers in Medicine, 2019, 6, 129.	2.6	49
6	Biological Function and Molecular Mapping of M Antigen in Yeast Phase of Histoplasma capsulatum. PLoS ONE, 2008, 3, e3449.	2.5	43
7	TGF-β-associated enhanced susceptibility to leishmaniasis following intramuscular vaccination of mice with Leishmania amazonensis antigens. Microbes and Infection, 2005, 7, 1317-1323.	1.9	41
8	ELISA for early diagnosis of histoplasmosis. Journal of Medical Microbiology, 2004, 53, 509-514.	1.8	40
9	Protection against cutaneous leishmaniasis by intranasal vaccination with lipophosphoglycan. Vaccine, 2007, 25, 2716-2722.	3.8	40
10	BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermostability and active site accessibility. Toxicon, 2007, 50, 18-31.	1.6	40
11	Interactions between Neutrophils and <i>Leishmania braziliensis</i> Amastigotes Facilitate Cell Activation and Parasite Clearance. Journal of Innate Immunity, 2015, 7, 354-363.	3.8	39
12	The PGE2/IL-10 Axis Determines Susceptibility of B-1 Cell-Derived Phagocytes (B-1CDP) to Leishmania major Infection. PLoS ONE, 2015, 10, e0124888.	2.5	39
13	Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Translational Medicine, 2020, 9, 250-260.	3.3	34
14	Immunomodulating role of IL-10-producing B cells in Leishmania amazonensis infection. Cellular Immunology, 2018, 334, 20-30.	3.0	33
15	The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signalling, 2017, 13, 143-152.	2.2	29
16	Circulating Senescent T Cells Are Linked to Systemic Inflammation and Lesion Size During Human Cutaneous Leishmaniasis. Frontiers in Immunology, 2018, 9, 3001.	4.8	28
17	Immunotherapy using anti-PD-1 and anti-PD-L1 in Leishmania amazonensis-infected BALB/c mice reduce parasite load. Scientific Reports, 2019, 9, 20275.	3.3	27
18	The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection. Cells, 2021, 10, 1891.	4.1	27

#	Article	IF	CITATIONS
19	Identification and characterization of proteases from skin mucus of tambacu, a Neotropical hybrid fish. Fish Physiology and Biochemistry, 2007, 33, 173-179.	2.3	25
20	Leishmanicidal therapy targeted to parasite proteases. Life Sciences, 2019, 219, 163-181.	4.3	24
21	The Comparative Genomics and Phylogenomics of <i>Leishmania Amazonensis</i> Parasite. Evolutionary Bioinformatics, 2014, 10, EBO.S13759.	1.2	23
22	Efficacy of intranasal LaAg vaccine against Leishmania amazonensis infection in partially resistant C57Bl/6 mice. Parasites and Vectors, 2016, 9, 534.	2.5	23
23	Polyclonal F(ab')2 fragments of equine antibodies raised against the spike protein neutralize SARS-CoV-2 variants with high potency. IScience, 2021, 24, 103315.	4.1	23
24	Identification of Serine Proteases from Leishmania braziliensis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2007, 62, 373-381.	1.4	22
25	Intranasal vaccination with extracellular serine proteases of Leishmania amazonensis confers protective immunity to BALB/c mice against infection. Parasites and Vectors, 2014, 7, 448.	2.5	22
26	Oligopeptidase B from Leishmania amazonensis: molecular cloning, gene expression analysis and molecular model. Parasitology Research, 2007, 101, 865-875.	1.6	21
27	Implication of Apoptosis for the Pathogenesis of Trypanosoma cruzi Infection. Frontiers in Immunology, 2017, 8, 518.	4.8	21
28	Effects of Bone Marrow Mesenchymal Stromal Cell Therapy in Experimental Cutaneous Leishmaniasis in BALB/c Mice Induced by Leishmania amazonensis. Frontiers in Immunology, 2017, 8, 893.	4.8	21
29	Oligopeptidase B from L. amazonensis: molecular cloning, gene expression analysis and molecular model. Parasitology Research, 2007, 101, 853-863.	1.6	20
30	Nanoencapsulated retinoic acid as a safe tolerogenic adjuvant for intranasal vaccination against cutaneous leishmaniasis. Vaccine, 2019, 37, 3660-3667.	3.8	20
31	Serine proteases of Leishmania amazonensis as immunomodulatory and disease-aggravating components of the crude LaAg vaccine. Vaccine, 2010, 28, 5491-5496.	3.8	19
32	B-1 cells modulate the murine macrophage response to <i>Leishmania major</i> infection. World Journal of Biological Chemistry, 2017, 8, 151.	4.3	18
33	Intranasal vaccination with killed <i>Leishmania amazonensis</i> promastigotes antigen (LaAg) associated with CAF01 adjuvant induces partial protection in BALB/c mice challenged with <i>Leishmania (infantum) chagasi.</i> . Parasitology, 2015, 142, 1640-1646.	1.5	17
34	Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Frontiers in Immunology, 2018, 9, 1569.	4.8	17
35	PD-1 Blockade Modulates Functional Activities of Exhausted-Like T Cell in Patients With Cutaneous Leishmaniasis. Frontiers in Immunology, 2021, 12, 632667.	4.8	16
36	Oligopeptidase B-2 from Leishmania amazonensis with an unusual C-terminal extension. Acta Parasitologica, 2008, 53, .	1.1	15

#	Article	IF	CITATIONS
37	Diet-induced obesity promotes systemic inflammation and increased susceptibility to murine visceral leishmaniasis. Parasitology, 2016, 143, 1647-1655.	1.5	15
38	Involvement of the capsular GalXM-induced IL-17 cytokine in the control of Cryptococcus neoformans infection. Scientific Reports, 2018, 8, 16378.	3.3	15
39	The role of TLR9 on Leishmania amazonensis infection and its influence on intranasal LaAg vaccine efficacy. PLoS Neglected Tropical Diseases, 2019, 13, e0007146.	3.0	15
40	Peripheral expression of LACK-mRNA induced by intranasal vaccination with PCI-NEO-LACK defines the protection duration against murine visceral leishmaniasis. Parasitology, 2012, 139, 1562-1569.	1.5	13
41	Leishmania Parasites Drive PD-L1 Expression in Mice and Human Neutrophils With Suppressor Capacity. Frontiers in Immunology, 2021, 12, 598943.	4.8	13
42	Intranasal immunization with chitosan microparticles enhances LACK-DNA vaccine protection and induces specific long-lasting immunity against visceral leishmaniasis. Microbes and Infection, 2022, 24, 104884.	1.9	13
43	Intranasal immunization with LACK-DNA promotes protective immunity in hamsters challenged with <i>Leishmania chagasi </i> . Parasitology, 2011, 138, 1892-1897.	1.5	12
44	Dependency of B-1 Cells in the Maintenance of Splenic Interleukin-10 Producing Cells and Impairment of Macrophage Resistance in Visceral Leishmaniasis. Frontiers in Microbiology, 2017, 8, 978.	3.5	12
45	Vaccination With Recombinant Filamentous fd Phages Against Parasite Infection Requires TLR9 Expression. Frontiers in Immunology, 2018, 9, 1173.	4.8	12
46	Compartmentalized cytotoxic immune response leads to distinct pathogenic roles of natural killer and senescent CD8 + T cells in human cutaneous leishmaniasis. Immunology, 2020, 159, 429-440.	4.4	12
47	The stepwise selection for ketoconazole resistance induces upregulation of C14-demethylase (CYP51) in Leishmania amazonensis. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 416-419.	1.6	11
48	Oligopeptidase B and B2: comparative modelling and virtual screening as searching tools for new antileishmanial compounds. Parasitology, 2017, 144, 536-545.	1.5	11
49	PF-429242, a Subtilisin Inhibitor, Is Effective in vitro Against Leishmania infantum. Frontiers in Microbiology, 2021, 12, 583834.	3.5	11
50	Anti-Leishmania Effects of Volatile Oils and Their Isolates. Revista Brasileira De Farmacognosia, 0, , 1.	1.4	11
51	How to B(e)-1 Important Cell During Leishmania Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 424.	3.9	10
52	The role of Toll-like receptor 9 in a murine model of Cryptococcus gattii infection. Scientific Reports, 2021, 11, 1407.	3.3	10
53	Dietary Vitamin D3 Deficiency Increases Resistance to Leishmania (Leishmania) amazonensis Infection in Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 88.	3.9	9
54	B-1 lymphocytes are able to produce IL-10, but is not pathogenic during Leishmania (Leishmania) amazonensis infection. Immunobiology, 2020, 225, 151857.	1.9	9

#	Article	IF	CITATIONS
55	Transcriptomic landscape of skin lesions in cutaneous leishmaniasis reveals a strong CD8 ⁺ T cell immunosenescence signature linked to immunopathology. Immunology, 2021, 164, 754-765.	4.4	8
56	TLR9 Signaling Suppresses the Canonical Plasma Cell Differentiation Program in Follicular B Cells. Frontiers in Immunology, 2018, 9, 2281.	4.8	7
57	Pam3CSK4 adjuvant given intranasally boosts anti-Leishmania immunogenicity but not protective immune responses conferred by LaAg vaccine against visceral leishmaniasis. Microbes and Infection, 2019, 21, 328-335.	1.9	7
58	X-linked immunodeficient (XID) mice exhibit high susceptibility to Cryptococcus gattii infection. Scientific Reports, 2021, 11, 18397.	3.3	7
59	Structural characterization and low-resolution model of BJ-48, a thrombin-like enzyme from Bothrops jararacussu venom. Biophysical Chemistry, 2008, 132, 159-164.	2.8	5
60	Intranasal vaccination with adjuvant-free S. aureus antigens effectively protects mice against experimental sepsis. Vaccine, 2016, 34, 3493-3499.	3.8	5
61	Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous leishmaniasis caused by Leishmania amazonensis. Stem Cell Research and Therapy, 2020, 11, 374.	5.5	5
62	Yellow fever vaccine protects mice against Zika virus infection. PLoS Neglected Tropical Diseases, 2021, 15, e0009907.	3.0	5
63	Cryptococcus: History, Epidemiology and Immune Evasion. Applied Sciences (Switzerland), 2022, 12, 7086.	2.5	5
64	Aspartic Proteinase in Dugesia tigrina (Girard) Planaria. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 541-547.	1.4	3
65	Vitamin D increases killing of intracellular Leishmania amazonensis in vitro independently of macrophage oxidative mechanisms. Parasitology, 2020, 147, 1792-1800.	1.5	3
66	Eosinophils increase macrophage ability to control intracellular Leishmania amazonensis infection via PGD2 paracrine activity in vitro. Cellular Immunology, 2021, 363, 104316.	3.0	3
67	Serine Proteases and Vaccines against Leishmaniasis: A Dual Role. Journal of Vaccines & Vaccination, 2012, 06, .	0.3	2
68	Characterization of Sv129 Mice as a Susceptible Model to Leishmania amazonensis. Frontiers in Medicine, 2019, 6, 100.	2.6	2
69	Simvastatin Resistance of Leishmania amazonensis Induces Sterol Remodeling and Cross-Resistance to Sterol Pathway and Serine Protease Inhibitors. Microorganisms, 2022, 10, 398.	3.6	2
70	Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Current Issues in Molecular Biology, 2022, 44, 2089-2106.	2.4	2
71	Ageing impairs protective immunity and promotes susceptibility to murine visceral leishmaniasis. Parasitology, 2022, 149, 1249-1256.	1.5	2
72	Optimization of sample preparation from skin mucus of a neotropical fish for two-dimensional substrate gel electrophoresis. Analytical Biochemistry, 2006, 357, 153-155.	2.4	0

#	Article	IF	CITATIONS
73	MPLA and AddaVax® Adjuvants Fail to Promote Intramuscular LaAg Vaccine Protectiveness against Experimental Cutaneous Leishmaniasis. Microorganisms, 2021, 9, 1272.	3.6	0
74	Small Angle X-ray Scattering, Molecular Modeling, and Chemometric Studies from a Thrombin-Like (Lmr-47) Enzyme of Lachesis m. rhombeata Venom. Molecules, 2021, 26, 3930.	3.8	0
75	COVID-19 and the Challenges of Chemotherapy: The Failure Case of Hydroxychloroquine in the Clinical Treatment of SARS-CoV-2 Infection. Coronaviruses, 2021, 2, .	0.3	Ο
76	Effects of a Serine Protease Inhibitor N-p-Tosyl-L-phenylalanine Chloromethyl Ketone (TPCK) on Leishmania amazonensis and Leishmania infantum. Pharmaceutics, 2022, 14, 1373.	4.5	0