
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/422413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aspects of the thermogravimetric analysis of liquid mixtures as predictive or interpretation tool for batch distillation. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6765-6776.	2.0	2
2	A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production. Journal of Hazardous Materials, 2022, 421, 126792.	6.5	62
3	Photoreforming of model carbohydrate mixtures from pulping industry wastewaters. International Journal of Hydrogen Energy, 2022, , .	3.8	4
4	Effect of Metal Cocatalysts and Operating Conditions on the Product Distribution and the Productivity of the CO ₂ Photoreduction. Industrial & Engineering Chemistry Research, 2022, 61, 2963-2972.	1.8	10
5	Photocatalytic Reduction of Nitrates and Combined Photodegradation with Ammonium. Catalysts, 2022, 12, 321.	1.6	3
6	Low Metal Loading (Au, Ag, Pt, Pd) Photo-Catalysts Supported on TiO2 for Renewable Processes. Materials, 2022, 15, 2915.	1.3	6
7	Modelling of Fuel Cells and Related Energy Conversion Systems. ChemEngineering, 2022, 6, 32.	1.0	6
8	Design of efficient photocatalytic processes for the production of hydrogen from biomass derived substrates. International Journal of Hydrogen Energy, 2021, 46, 12105-12116.	3.8	36
9	Flame-based synthesis of oxide nanoparticles for photocatalytic applications. , 2021, , 63-82.		0
10	Flame Pyrolysis Synthesis of Mixed Oxides for Glycerol Steam Reforming. Materials, 2021, 14, 652.	1.3	4
11	Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy & Fuels, 2021, 35, 6964-7029.	2.5	403
12	Kinetic Modelling of Biodegradability Data of Commercial Polymers Obtained under Aerobic Composting Conditions. Eng, 2021, 2, 54-68.	1.2	17
13	Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts. Catalysts, 2021, 11, 209.	1.6	12
14	Feasibility Study of the Solar-Promoted Photoreduction of CO2 to Liquid Fuels with Direct or Indirect Use of Renewable Energy Sources. Energies, 2021, 14, 2804.	1.6	0
15	Photo-Oxidation of Ammonia to Molecular Nitrogen in Water under UV, Vis and Sunlight Irradiation. Catalysts, 2021, 11, 975.	1.6	3
16	Ethylene from renewable ethanol: Process optimization and economic feasibility assessment. Journal of Industrial and Engineering Chemistry, 2021, 104, 272-285.	2.9	13
17	Solid–Liquid–Liquid Equilibria of the System Water, Acetonitrile, and Ammonium Bicarbonate in Multiphase Reacting Systems. Industrial & Engineering Chemistry Research, 2021, 60, 16791-16804.	1.8	3
18	Feasibility study and process design of a direct route from bioethanol to ethylene oxide. Journal of Environmental Chemical Engineering, 2021, 9, 105969.	3.3	4

#	Article	IF	CITATIONS
19	Process Intensification for Ammonia Synthesis in Multibed Reactors with Fe-Wustite and Ru/C Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 908-915.	1.8	6
20	Hydrogen, ethylene and power production from bioethanol: Ready for the renewable market?. International Journal of Hydrogen Energy, 2020, 45, 10292-10303.	3.8	25
21	Photochemical vs. photocatalytic azo-dye removal in a pilot free-surface reactor: Is the catalyst effective?. Separation and Purification Technology, 2020, 237, 116320.	3.9	14
22	Process Modeling Issues in the Design of a Continuousâ€Flow Process for the Production of Ibuprofen. Chemical Engineering and Technology, 2020, 43, 2557-2566.	0.9	1
23	Matching nanotechnologies with reactor scale-up and industrial exploitation. , 2020, , 407-442.		5
24	Carbon Dioxide Methanation: Design of a Fully Integrated Plant. Energy & Fuels, 2020, 34, 7242-7256.	2.5	33
25	Photoreforming of Glucose over CuO/TiO2. Catalysts, 2020, 10, 477.	1.6	24
26	Reactor Design, Modelling and Process Intensification for Ammonia Synthesis. Green Energy and Technology, 2020, , 17-48.	0.4	9
27	Bioethylene Production: From Reaction Kinetics to Plant Design. ACS Sustainable Chemistry and Engineering, 2019, 7, 13333-13350.	3.2	16
28	Kinetic model for the ammoxidation of ethanol to acetonitrile. Chemical Engineering Science, 2019, 207, 862-875.	1.9	8
29	Semiâ€Batch Photocatalytic Reduction of Nitrates: Role of Process Conditions and Co atalysts. ChemCatChem, 2019, 11, 4642-4652.	1.8	20
30	Catalytic, Photocatalytic, and Electrocatalytic Processes for the Valorization of CO2. Catalysts, 2019, 9, 765.	1.6	6
31	Structured Monolithic Catalysts vs. Fixed Bed for the Oxidative Dehydrogenation of Propane. Materials, 2019, 12, 884.	1.3	2
32	High pressure CO2 photoreduction using Au/TiO2: unravelling the effect of co-catalysts and of titania polymorphs. Catalysis Science and Technology, 2019, 9, 2253-2265.	2.1	34
33	Steam reforming of ethanol over Ni/MgAl2O4 catalysts. International Journal of Hydrogen Energy, 2019, 44, 952-964.	3.8	67
34	Feasibility assessment, process design and dynamic simulation for cogeneration of heat and power by steam reforming of diluted bioethanol. International Journal of Hydrogen Energy, 2019, 44, 2-22.	3.8	11
35	Integrated Plant Layout for Heat and Power Cogeneration from Diluted Bioethanol. ACS Sustainable Chemistry and Engineering, 2018, 6, 5358-5369.	3.2	6
36	New Insights into the Role of the Synthesis Procedure on the Performance of Co-Based Catalysts for Ethanol Steam Reforming. Topics in Catalysis, 2018, 61, 1734-1745.	1.3	15

#	Article	IF	CITATIONS
37	Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion. Frontiers of Chemical Science and Engineering, 2018, 12, 315-325.	2.3	39
38	Conceptual design and feasibility assessment of photoreactors for solar energy storage. Solar Energy, 2018, 172, 225-231.	2.9	14
39	Acetonitrile from Bioethanol Ammoxidation: Process Design from the Grass-Roots and Life Cycle Analysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 5441-5451.	3.2	30
40	Alternative integrated distillation strategies for the purification of acetonitrile from ethanol ammoxidation. Journal of Industrial and Engineering Chemistry, 2018, 59, 35-49.	2.9	6
41	Continuous flow (micro-)reactors for heterogeneously catalyzed reactions: Main design and modelling issues. Catalysis Today, 2018, 308, 20-31.	2.2	50
42	Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application. Catalysts, 2018, 8, 623.	1.6	13
43	Photoreduction of nitrates from waste and drinking water. Materials Today: Proceedings, 2018, 5, 17404-17413.	0.9	11
44	Preface for Catalysis for a Cleaner and Sustainable Future. Topics in Catalysis, 2018, 61, 1793-1793.	1.3	1
45	High Pressure Photoreduction of CO2: Effect of Catalyst Formulation, Hole Scavenger Addition and Operating Conditions. Catalysts, 2018, 8, 430.	1.6	41
46	Process Intensification by Exploiting Diluted 2nd Generation Bio-ethanol in the Low-Temperature Steam Reforming Process. Topics in Catalysis, 2018, 61, 1832-1841.	1.3	10
47	Process simulation of ammonia synthesis over optimized Ru/C catalyst and multibed Fe + Ru configurations. Journal of Industrial and Engineering Chemistry, 2018, 66, 176-186.	2.9	25
48	Process simulation of hydrogen production by steam reforming of diluted bioethanol solutions: Effect of operating parameters on electrical and thermal cogeneration by using fuel cells. International Journal of Hydrogen Energy, 2017, 42, 23776-23783.	3.8	18
49	Parametric study and kinetic testing for ethanol steam reforming. Applied Catalysis B: Environmental, 2017, 203, 899-909.	10.8	48
50	Ethylene production via catalytic dehydration of diluted bioethanol: A step towards an integrated biorefinery. Applied Catalysis B: Environmental, 2017, 210, 407-420.	10.8	49
51	Innovative photoreactors for unconventional photocatalytic processes: the photoreduction of CO2 and the photo-oxidation of ammonia. Rendiconti Lincei, 2017, 28, 151-158.	1.0	22
52	Ethylene production from diluted bioethanol solutions. Canadian Journal of Chemical Engineering, 2017, 95, 1752-1759.	0.9	21
53	Low temperature ethanol steam reforming for process intensification: New Ni/MxO–ZrO2 active and stable catalysts prepared by flame spray pyrolysis. International Journal of Hydrogen Energy, 2017, 42, 28193-28213.	3.8	22
54	Techno-economic Analysis of a Bioethanol to Hydrogen Centralized Plant. Energy & Fuels, 2017, 31, 12988-12996.	2.5	20

#	Article	IF	CITATIONS
55	Pressure-swing or extraction-distillation for the recovery of pure acetonitrile from ethanol ammoxidation process: A comparison of efficiency and cost. Chemical Engineering Research and Design, 2017, 127, 92-102.	2.7	14
56	CO2 photoreduction at high pressure to both gas and liquid products over titanium dioxide. Applied Catalysis B: Environmental, 2017, 200, 386-391.	10.8	80
57	Photocatalytic Processes for the Abatement of N-Containing Pollutants from Waste Water. Part 1: Inorganic Pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17, 3632-3653.	0.9	23
58	Process Simulation for Industrial Process Design. Industrial Chemistry, 2017, 03, .	0.1	0
59	Process Simulation for the Design and Scale Up of Heterogeneous Catalytic Process: Kinetic Modelling Issues. Catalysts, 2017, 7, 159.	1.6	22
60	Pure and Fe-Doped Mesoporous Titania Catalyse the Oxidation of Acid Orange 7 by H2O2 under Different Illumination Conditions: Fe Doping Improves Photocatalytic Activity under Simulated Solar Light. Catalysts, 2017, 7, 213.	1.6	24
61	Liquid vs. Gas Phase CO2 Photoreduction Process: Which Is the Effect of the Reaction Medium?. Energies, 2017, 10, 1394.	1.6	54
62	Catalytic and Photocatalytic Processes for the Abatement of N-Containing Pollutants from Wastewater. Part 2: Organic Pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17, 3654-3672.	0.9	23
63	Removal of N-Containing Inorganic Pollutants from Waste and Drinking Water. Industrial Chemistry, 2016, 02, .	0.1	0
64	Combined Heat and Power Cogeneration from Bioethanol and Fuel Cells: A Brief Overview on Demonstrative Units and Process Design. Industrial Chemistry, 2016, 2, .	0.1	0
65	Flow Chemistry: New Concepts from Batch to Continuous Organic Chemistry. Industrial Chemistry, 2016, 2, .	0.1	5
66	Recent Advances in Industrial Chemistry. Industrial Chemistry, 2016, 02, .	0.1	0
67	Economic Assessment of Biorefinery Processes: The Case of Bioethanol. Industrial Chemistry, 2016, 02,	0.1	1
68	Spectroscopic Investigation of Titania‣upported Gold Nanoparticles Prepared by a Modified Deposition/Precipitation Method for the Oxidation of CO. ChemCatChem, 2016, 8, 2136-2145.	1.8	11
69	Flame Spray Pyrolysis as fine preparation technique for stable Co and Co/Ru based catalysts for FT process. Applied Catalysis A: General, 2016, 520, 92-98.	2.2	15
70	Flame-pyrolysis-prepared catalysts for the steam reforming of ethanol. Catalysis Science and Technology, 2016, 6, 6247-6256.	2.1	23
71	Kinetic Modeling and Reactor Simulation for Ethanol Steam Reforming. ChemCatChem, 2016, 8, 3804-3813.	1.8	13
72	Syngas production via steam reforming of bioethanol over Ni–BEA catalysts: A BTL strategy. International Journal of Hydrogen Energy, 2016, 41, 16878-16889.	3.8	26

#	Article	IF	CITATIONS
73	Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbon‣upported Palladium Nanoparticles. ChemCatChem, 2016, 8, 2482-2491.	1.8	39
74	Non-destructive method for the identification of ceramic production by portable X-rays Fluorescence (pXRF). A case study of amphorae manufacture in central Italy. Journal of Archaeological Science: Reports, 2016, 10, 253-262.	0.2	13
75	Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: Flow chemistry. Chemical Engineering Journal, 2016, 296, 56-70.	6.6	179
76	Hydrogen storage over metal-doped activated carbon. International Journal of Hydrogen Energy, 2015, 40, 7609-7616.	3.8	44
77	Bimetallic Ni–Cu Catalysts for the Low-Temperature Ethanol Steam Reforming: Importance of Metal–Support Interactions. Catalysis Letters, 2015, 145, 549-558.	1.4	30
78	CO ₂ photoconversion to fuels under high pressure: effect of TiO ₂ phase and of unconventional reaction conditions. Catalysis Science and Technology, 2015, 5, 4481-4487.	2.1	52
79	Process simulation and optimisation of H2 production from ethanol steam reforming and its use in fuel cells. 1. Thermodynamic and kinetic analysis. Chemical Engineering Journal, 2015, 281, 1024-1035.	6.6	48
80	Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization. Chemical Engineering Journal, 2015, 281, 1036-1044.	6.6	52
81	Metal Dispersion and Interaction with the Supports in the Coke Production Over Ethanol Steam Reforming Catalysts. , 2015, , 695-711.		10
82	TiO2-supported catalysts for the steam reforming of ethanol. Applied Catalysis A: General, 2014, 477, 42-53.	2.2	46
83	Hydrogen production by ethanol steam reforming: Effect of the synthesis parameters on the activity of Ni/TiO2 catalysts. International Journal of Hydrogen Energy, 2014, 39, 4252-4258.	3.8	69
84	Ni/ZrO2 catalysts in ethanol steam reforming: Inhibition of coke formation by CaO-doping. Applied Catalysis B: Environmental, 2014, 150-151, 12-20.	10.8	111
85	Silica and zirconia supported catalysts for the low-temperature ethanol steam reforming. Applied Catalysis B: Environmental, 2014, 150-151, 257-267.	10.8	79
86	Benzyl Alcohol Oxidation on Carbon‣upported Pd Nanoparticles: Elucidating the Reaction Mechanism. ChemCatChem, 2014, 6, 3464-3473.	1.8	82
87	A novel high-pressure photoreactor for CO ₂ photoconversion to fuels. RSC Advances, 2014, 4, 28883-28885.	1.7	33
88	Redox properties of Co- and Cu-based catalysts for the steam reforming of ethanol. International Journal of Hydrogen Energy, 2013, 38, 3213-3225.	3.8	41
89	Quantification of "delivered―H2 by a volumetric method to test H2 storage materials. International Journal of Hydrogen Energy, 2013, 38, 13309-13317.	3.8	5
90	Oxygen transport in nanostructured lanthanum manganites. Physical Chemistry Chemical Physics, 2013, 15, 16779.	1.3	7

#	Article	IF	CITATIONS
91	Nickel Catalysts Supported Over TiO ₂ , SiO ₂ and ZrO ₂ for the Steam Reforming of Glycerol. ChemCatChem, 2013, 5, 294-306.	1.8	79
92	Advanced Oxides In Catalysis. Current Inorganic Chemistry, 2013, 3, 50-69.	0.2	3
93	Effect of Nitrogen-Containing Impurities on the Activity of Perovskitic Catalysts for the Catalytic Combustion of Methane. Inorganic Chemistry, 2012, 51, 11680-11687.	1.9	3
94	Electron Paramagnetic Resonance Analysis of La _{1–<i>x</i>} M _{<i>x</i>} MnO _{3+Î} (M = Ce, Sr) Perovskite-Like Nanostructured Catalysts. Inorganic Chemistry, 2012, 51, 8433-8440.	1.9	12
95	Spectroscopic Enlightening of the Local Structure Of VO _X Active Sites in Catalysts for the Odh of Propane. Journal of Physical Chemistry C, 2012, 116, 22386-22398.	1.5	30
96	Hydrogen Production by Photoreforming of Renewable Substrates. ISRN Chemical Engineering, 2012, 2012, 1-21.	1.2	57
97	Effect of vanadium dispersion and of support properties on the catalytic activity of V-containing silicas. Catalysis Today, 2012, 179, 140-148.	2.2	35
98	Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol. Applied Catalysis B: Environmental, 2012, 117-118, 384-396.	10.8	114
99	5kWe+5kWt reformer-PEMFC energy generator from bioethanol first data on the fuel processor from a demonstrative project. International Journal of Hydrogen Energy, 2012, 37, 8499-8504.	3.8	28
100	Perovskite-like catalysts for the catalytic flameless combustion of methane. Catalysis in Industry, 2012, 4, 121-128.	0.3	3
101	EXAFSâ^'XANES Evidence of in Situ Cesium Reduction in Csâ^'Ru/C Catalysts for Ammonia Synthesis. Inorganic Chemistry, 2011, 50, 3757-3765.	1.9	30
102	Effect of vanadium dispersion and support properties on the catalytic activity of V-SBA-15 and V-MCF mesoporous materials prepared by direct synthesis. Catalysis Today, 2011, 176, 458-464.	2.2	27
103	5 KWe + 5 KWt PEM-FC Generator From Bioethanol: Fuel Processor and Development of New Reforming Catalysts. , 2011, , .		1
104	Micro- and Nano-Structured Materials for H2 Storage: Application to Mobile Fuel Cell Systems. Micro and Nanosystems, 2011, 3, 331-347.	0.3	2
105	Integrated 5 kWe + 5 kWt PEM-FC Generator From Bioethanol: A Demonstrative Project. , 2010, , .		1
106	Au on MgAl2O4 spinels: The effect of support surface properties in glycerol oxidation. Journal of Catalysis, 2010, 275, 108-116.	3.1	100
107	Oxygen non-stoichiometry in perovskitic catalysts: Impact on activity for the flameless combustion of methane. Chemical Engineering Journal, 2010, 162, 768-775.	6.6	17
108	Effective Ag doping and resistance to sulfur poisoning of La–Mn perovskites for the catalytic flameless combustion of methane. Journal of Materials Chemistry, 2010, 20, 10021.	6.7	18

#	Article	IF	CITATIONS
109	EPR enlightening some aspects of propane ODH over VOx–SiO2 and VOx–Al2O3. Chemical Engineering Journal, 2009, 154, 131-136.	6.6	13
110	V–Al–O catalysts prepared by flame pyrolysis for the oxidative dehydrogenation of propane to propylene. Catalysis Today, 2009, 141, 271-281.	2.2	32
111	Hydrocracking of long chain linear paraffins. Chemical Engineering Journal, 2009, 154, 295-301.	6.6	60
112	La–Ag–Co perovskites for the catalytic flameless combustion of methane. Applied Catalysis A: General, 2009, 370, 24-33.	2.2	27
113	Effect of sulphur poisoning on perovskite catalysts prepared by flame-pyrolysis. Applied Catalysis B: Environmental, 2009, 89, 383-390.	10.8	50
114	V2O5–SiO2 systems prepared by flame pyrolysis as catalysts for the oxidative dehydrogenation of propane. Journal of Catalysis, 2008, 256, 45-61.	3.1	57
115	A photocatalytic water splitting device for separate hydrogen and oxygen evolution. Chemical Communications, 2007, , 5022.	2.2	98
116	Promoters state and catalyst activation during ammonia synthesis over Ru/C. Applied Catalysis A: General, 2007, 323, 219-225.	2.2	45
117	Methylation of phenol over high-silica beta zeolite: Effect of zeolite acidity and crystal size on catalyst behaviour. Journal of Catalysis, 2007, 245, 285-300.	3.1	50
118	Solvent nature effect in preparation of perovskites by flame pyrolysis. Applied Catalysis B: Environmental, 2007, 72, 227-232.	10.8	42
119	Solvent nature effect in preparation of perovskites by flame-pyrolysis. Applied Catalysis B: Environmental, 2007, 72, 218-226.	10.8	39
120	Kinetic Study of Ammonia Synthesis on a Promoted Ru/C Catalyst. Industrial & Engineering Chemistry Research, 2006, 45, 4150-4155.	1.8	37
121	Oxide Nanomaterials for the Catalytic Combustion of Hydrocarbons. , 2006, , 563-601.		0
122	Preparation by flame spray pyrolysis of ABO3±δ catalysts for the flameless combustion of methane. Catalysis Today, 2006, 117, 549-553.	2.2	48
123	La1â^'xA′xCo1â^'yFeyO3±δ (A′Â=ÂCe,Sr) catalysts for the flameless combustion of methane. Journal of Materials Science, 2006, 41, 4713-4719.	1.7	16
124	Effect of M ion oxidation state in Sr1â^'xMxTiO3±l´ perovskites in methane catalytic flameless combustion. Journal of Molecular Catalysis A, 2006, 245, 55-61.	4.8	13
125	Effect of honeycomb supporting on activity of LaBO3±δ perovskite-like catalysts for methane flameless combustion. Applied Catalysis B: Environmental, 2006, 63, 131-136.	10.8	19
126	Study of the deactivation of a commercial catalyst for ethylbenzene dehydrogenation to styrene. Applied Catalysis A: General, 2005, 292, 118-123.	2.2	59

#	Article	IF	CITATIONS
127	Graphitised carbon as support for Ru/C ammonia synthesis catalyst. Catalysis Today, 2005, 102-103, 219-224.	2.2	53
128	SrAgTiO (, 0.1) perovskite-structured catalysts for the flameless combustion of methane. Journal of Catalysis, 2005, 232, 247-256.	3.1	37
129	Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion. Journal of Catalysis, 2005, 236, 251-261.	3.1	131
130	Effect of preparation method on activity and stability of LaMnO and LaCoO catalysts for the flameless combustion of methane. Applied Catalysis B: Environmental, 2005, 55, 133-139.	10.8	107
131	La2O3 as primer for supporting La0.9Ce0.1CoO3±δ on cordieritic honeycombs. Applied Catalysis B: Environmental, 2005, 56, 221-227.	10.8	27
132	Effect of preparation parameters on SrTiO3±δ catalyst for the flameless combustion of methane. Journal of Molecular Catalysis A, 2005, 226, 33-40.	4.8	45
133	Effect of Ru loading and of Ru precursor in Ru/C catalysts for ammonia synthesis. Applied Catalysis A: General, 2005, 282, 315-320.	2.2	48
134	Effect of surface acidity on the behaviour of Fe-MFI catalysts for benzene hydroxylation to phenol. Applied Catalysis A: General, 2004, 262, 131-136.	2.2	26
135	Effect of primer on honeycomb-supported La0.9Ce0.1CoO3±Î′ perovskite for methane catalytic flameless combustion. Applied Catalysis B: Environmental, 2003, 44, 107-116.	10.8	42
136	Activity and deactivation of Fe-MFI catalysts for benzene hydroxylation to phenol by N2O. Journal of Catalysis, 2003, 214, 169-178.	3.1	77
137	Characterisation of Ru/C catalysts for ammonia synthesis by oxygen chemisorption. Applied Catalysis A: General, 2003, 248, 97-103.	2.2	48
138	Wustite as a new precursor of industrial ammonia synthesis catalysts. Applied Catalysis A: General, 2003, 251, 121-129.	2.2	53
139	Morphological and Structural Features of Activated Iron Silicalites:Â A129Xe-NMR and EPR Investigation. Journal of Physical Chemistry B, 2003, 107, 8922-8928.	1.2	12
140	Catalytic combustion of hydrocarbons over perovskites. Applied Catalysis B: Environmental, 2002, 38, 29-37.	10.8	90
141	Evolution of Extraframework Iron Species in Fe Silicalite. Journal of Catalysis, 2002, 208, 64-82.	3.1	170
142	Study of Fe-silicalite catalyst for the N2O oxidation of benzene to phenol. Applied Catalysis A: General, 2001, 205, 93-99.	2.2	33
143	Promoters effect in Ru/C ammonia synthesis catalyst. Applied Catalysis A: General, 2001, 208, 271-278.	2.2	118
144	Catalytic flameless combustion of methane over perovskites prepared by flame–hydrolysis. Applied Catalysis B: Environmental, 2001, 33, 345-352.	10.8	81

ILENIA ROSSETTI

#	Article	IF	CITATIONS
145	Perovskite catalysts for the catalytic flameless combustion of methane. Applied Catalysis B: Environmental, 2000, 28, 55-64.	10.8	111
146	A new method for preparing nanometer-size perovskitic catalysts for CH4 flameless combustion. Studies in Surface Science and Catalysis, 2000, 130, 197-202.	1.5	26
147	Carbon-supported promoted Ru catalyst for ammonia synthesis. Applied Catalysis A: General, 1999, 185, 269-275.	2.2	140
148	Hydrogen Production by Photoreforming of Organic Compounds. Journal of Technology Innovations in Renewable Energy, 0, 7, 55-59.	0.2	3
149	Catalytic Production of Renewable Hydrogen for Use in Fuel Cells: A Review Study. Topics in Catalysis, 0, , 1.	1.3	6