Qun Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4223922/publications.pdf

Version: 2024-02-01

471509 345221 1,310 45 17 36 citations h-index g-index papers 46 46 46 1938 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Size-Controllable Growth of Single Crystal In(OH)3and In2O3Nanocubes. Crystal Growth and Design, 2005, 5, 147-150.	3.0	209
2	A template-free aqueous route to ZnO nanorod arrays with high optical property. Chemical Communications, 2004, , 712.	4.1	161
3	Synthesis of yttrium hydroxide and oxide nanotubes. Journal of Crystal Growth, 2003, 259, 208-214.	1.5	139
4	A Precursor-Based Route to ZnSe Nanowire Bundles. Advanced Functional Materials, 2005, 15, 1787-1792.	14.9	106
5	A medial-reduction route to hollow carbon spheres. Carbon, 2003, 41, 1682-1685.	10.3	92
6	Highly Selective Synthesis of C ₆₀ Disks on Graphite Substrate by a Vapor–Solid Process. Angewandte Chemie - International Edition, 2008, 47, 693-696.	13.8	88
7	Synthesis of Carbon Nanotubes and Nanobelts through a Medial-Reduction Method. Journal of Physical Chemistry B, 2003, 107, 6329-6332.	2.6	42
8	Large-Scale Hydrothermal Synthesis of SnS ₂ Nanobelts. Journal of Nanoscience and Nanotechnology, 2005, 5, 806-809.	0.9	37
9	Preparation, characterization and optical properties of terbium oxide nanotubes. Journal of Materials Chemistry, 2003, 13, 3103.	6.7	36
10	A new type of silica-coated Gd ₂ (CO ₃) ₃ :Tb nanoparticle as a bifunctional agent for magnetic resonance imaging and fluorescent imaging. Nanotechnology, 2012, 23, 205103.	2.6	32
11	Selective Degradation of Chemical Bonds:Â from Single-Source Molecular Precursors to Metallic Ag and Semiconducting Ag2S Nanocrystals via Instant Thermal Activation. Langmuir, 2006, 22, 2802-2805.	3.5	30
12	Redox-Mediated Negative Differential Resistance Behavior from Metalloproteins Connected through Carbon Nanotube Nanogap Electrodes. Journal of the American Chemical Society, 2007, 129, 11018-11019.	13.7	29
13	Development of PEGylated KMnF3 nanoparticles as a T1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity. Nanoscale, 2013, 5, 5073.	5.6	29
14	Synthesis of ordered ZnO nanorods film on zinc-coated Si substrate and their photoluminescence property. Materials Chemistry and Physics, 2006, 99, 50-53.	4.0	21
15	Efficient field emission from well-oriented Cu2O film. Solid State Communications, 2005, 134, 229-231.	1.9	20
16	Hybrid bioinorganic insulin amyloid fibrils. Chemical Communications, 2010, 46, 4157.	4.1	19
17	Template-free Growth of Vertically Aligned CdS Nanowire Array Exhibiting Good Field Emission Property. Chemistry Letters, 2004, 33, 1088-1089.	1.3	17
	Flectronic structure and molecular orientation of pentacene thin films on ferromagnetic mml math		

Electronic structure and molecular orientation of pentacene thin films on ferromagnetic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:

#	Article	IF	Citations
19	Fabrication, structure and magnetic properties of fluoroperovskite KMnF3 nanostructures. Inorganic Chemistry Communication, 2004, 7, 283-285.	3.9	15
20	Self-Assembly of a Novel $<1>\hat{1}^2-ln2S3 Nanostructure Exhibiting Strong Quantum Confinement Effects. Journal of Nanoscience and Nanotechnology, 2005, 5, 776-780.$	0.9	15
21	Inorganic phosphate-triggered release of anti-cancer arsenic trioxide from a self-delivery system: an in vitro and in vivo study. Nanoscale, 2016, 8, 6094-6100.	5.6	15
22	Will Arsenic Trioxide Benefit Treatment of Solid Tumor by Nano- Encapsulation?. Mini-Reviews in Medicinal Chemistry, 2020, 20, 239-251.	2.4	15
23	Biocompatible KMnF3nanoparticular contrast agent with proper plasma retention time forin vivomagnetic resonance imaging. Nanotechnology, 2014, 25, 155101.	2.6	11
24	An arsenic trioxide nanoparticle prodrug (ATONP) potentiates a therapeutic effect on an aggressive hepatocellular carcinoma model <i>via</i> enhancement of intratumoral arsenic accumulation and disturbance of the tumor microenvironment. Journal of Materials Chemistry B, 2019, 7, 3088-3099.	5.8	11
25	Low Inorganic Phosphate Stress Inhibits Liver Cancer Progression: from In Vivo to In Vitro. Advanced Therapeutics, 2022, 5, .	3.2	10
26	Direct Precursor Conversion Reaction for Densely Packed Ag2S Nanocrystal Thin Films. Langmuir, 2007, 23, 2800-2804.	3.5	8
27	Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	8
28	A Novel Route to Octahedral In2O3Particles Exhibiting Near Band Emission. Chemistry Letters, 2005, 34, 118-119.	1.3	7
29	Sustained release of arsenic trioxide benefits interventional therapy on rabbit VX2 liver tumor. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102118.	3.3	7
30	Nanosized drug-eluting bead for transcatheter arterial chemoembolization (ND-TACE). Journal of Materials Chemistry B, 2020, 8, 8684-8694.	5.8	7
31	Folate Grafted Prussian Blue Entrapped with Gadolinium(III) as a New Contrast Agent for Tumor-Targeted Magnetic Resonant Imaging. Journal of Nanoscience and Nanotechnology, 2013, 13, 5233-5239.	0.9	6
32	Highly sensitive MRI contrast agent for enhanced visualization of tumors. New Journal of Chemistry, 2014, 38, 3813-3818.	2.8	6
33	Intratumoral Pi deprivation benefits chemoembolization therapy via increased accumulation of intracellular doxorubicin. Drug Delivery, 2022, 29, 1743-1753.	5.7	4
34	Paclitaxel-loaded KMnF3 nanoparticles for cancer imaging and therapy in vivo. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	3
35	Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	3
36	The evaluation of lanthanum trapped prussian blue as a phosphate binding agent with reduced bone uptake. New Journal of Chemistry, 2016, 40, 2644-2648.	2.8	3

Qun Tang

#	Article	IF	CITATION
37	Ultrasound-Guided Percutaneous Ethanol-Paclitaxel Combined Therapy for Rabbit VX2 Liver Tumors. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 263-270.	3.7	3
38	Development of biocompatible nanocubes as a T1-contrast enhancer for MR imaging of primary and metastatic liver cancer. RSC Advances, 2014, 4, 55003-55009.	3.6	2
39	Oxygen plasma-fragmented KMnF3 nanoparticle benefits contrast enhancement for MRI of a patient-derived tumor xenograft model. Nanotechnology, 2018, 29, 365601.	2.6	2
40	Intratumoral inorganic phosphate deprivation: A new anticancer strategy?. Medical Hypotheses, 2020, 135, 109497.	1.5	2
41	Pi-induced in-situ aggregation of sevelamer nanoparticles for vascular embolization. Nanotechnology, 2022, 33, 355101.	2.6	2
42	Coordination-Mediated Radical Nitration of Methyl Salicylate by Ferric Nitrate. Asian Journal of Chemistry, 2014, 26, 241-246.	0.3	1
43	Preclinical evaluation of severely defective manganese-based nanocrystal as a liver-specific contrast media for MR imaging: comparison with Gd-EOB-DTPA and MnDPDP. Nanotechnology, 2018, 29, 225101.	2.6	1
44	Sevelamer arsenite nanoparticle as a Pi-responsive drug carrier and embolic agent for chemoembolization. Drug Delivery, 2022, 29, 1447-1456.	5.7	1
45	Development of colloidal rare-earth arsenites as arsenic trioxide nanoparticle prodrugs (ATONP) for chemotherapy on a patient-derived xenograft model of colorectal cancer. New Journal of Chemistry, 2019, 43, 17408-17415.	2.8	0