
Shixiang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4223551/publications.pdf Version: 2024-02-01

SHIVIANGLU

#	Article	IF	CITATIONS
1	Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: Separation of oil/water mixture and demulsification. Chemical Engineering Journal, 2020, 384, 123339.	6.6	144
2	Fabrication of Superhydrophobic Surfaces with Hierarchical Structure through a Solution-Immersion Process on Copper and Galvanized Iron Substrates. Langmuir, 2008, 24, 10895-10900.	1.6	112
3	Facile fabrication of heterostructured g-C ₃ N ₄ /Bi ₂ MoO ₆ microspheres with highly efficient activity under visible light irradiation. Dalton Transactions, 2015, 44, 1601-1611.	1.6	106
4	Controlled growth of superhydrophobic films by sol–gel method on aluminum substrate. Applied Surface Science, 2010, 256, 6072-6075.	3.1	86
5	Fabrication of superhydrophobic Au–Zn alloy surface on a zinc substrate for roll-down, self-cleaning and anti-corrosion properties. Journal of Materials Chemistry A, 2015, 3, 16774-16784.	5.2	84
6	Facile preparation of high density polyethylene superhydrophobic/superoleophilic coatings on glass, copper and polyurethane sponge for self-cleaning, corrosion resistance and efficient oil/water separation. Journal of Colloid and Interface Science, 2018, 525, 76-85.	5.0	55
7	Fabrication of superhydrophobic surfaces on zinc substrates and their application as effective corrosion barriers. Applied Surface Science, 2011, 258, 1359-1365.	3.1	54
8	Controllable growth of durable superhydrophobic coatings on a copper substrate via electrodeposition. Physical Chemistry Chemical Physics, 2015, 17, 10871-10880.	1.3	52
9	Stable superhydrophobic Zn/ZnO surfaces fabricated via electrodeposition on tin substrate for self-cleaning behavior and switchable wettability. Journal of Alloys and Compounds, 2018, 747, 772-782.	2.8	48
10	First-principles study of dopants and defects in S-doped ZnO and its effect on photocatalytic activity. Computational Materials Science, 2012, 58, 119-124.	1.4	38
11	Controllable fabrication of superhydrophobic alloys surface on copper substrate for self-cleaning, anti-icing, anti-corrosion and anti-wear performance. Surface and Coatings Technology, 2018, 333, 61-70.	2.2	38
12	Controlled fabrication of NiO/ZnO superhydrophobic surface on zinc substrate with corrosion and abrasion resistance. Journal of Alloys and Compounds, 2017, 723, 225-236.	2.8	37
13	Controllable wettability of micro- and nano-dendritic structures formed on aluminum substrates. New Journal of Chemistry, 2015, 39, 6602-6610.	1.4	34
14	Controllable wettability and morphology of electrodeposited surfaces on zinc substrates. Applied Surface Science, 2016, 360, 904-914.	3.1	34
15	<i>In situ</i> construction of dual-morphology ZnCo ₂ O ₄ for high-performance asymmetric supercapacitors. Nanoscale Advances, 2019, 1, 3086-3094.	2.2	34
16	Fabrication of superhydrophobic surfaces on zinc substrates. Applied Surface Science, 2011, 257, 4801-4806.	3.1	32
17	Controlled growth of superhydrophobic films without any low-surface-energy modification by chemical displacement on zinc substrates. Materials Chemistry and Physics, 2011, 129, 1042-1046.	2.0	31
18	Application of flammulina-velutipes-like CeO2/Co3O4/rGO in high-performance asymmetric supercapacitors. Electrochimica Acta, 2020, 353, 136599.	2.6	31

Shixiang Lu

#	Article	IF	CITATIONS
19	Preparation of superhydrophobic/superoleophilic copper coated titanium mesh with excellent ice-phobic and water-oil separation performance. Applied Surface Science, 2019, 476, 353-362.	3.1	30
20	Fabrication of Au–AlAu ₄ –Al ₂ O ₃ superhydrophobic surface and its corrosion resistance. RSC Advances, 2015, 5, 15387-15394.	1.7	29
21	One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates. Journal of Colloid and Interface Science, 2011, 361, 388-396.	5.0	27
22	One-pot synthesis of NiCo2O4/rGO/NF hybrid electrode materials realizing ultrahigh capacitance and rapid charge/discharge at large current density. Applied Surface Science, 2020, 511, 145538.	3.1	23
23	Durable superhydrophobic Zn/ZnO/TiO2 surfaces on Ti6Al4V substrate with self-cleaning property and switchable wettability. Ceramics International, 2018, 44, 638-647.	2.3	22
24	Controlled growth of CuO–Cu ₃ Pt/Cu micro-nano binary architectures on copper substrate and its superhydrophobic behavior. New Journal of Chemistry, 2014, 38, 4534-4540.	1.4	21
25	First-principles study of Si atoms adsorbed on ZnO (0001) surface and the effect on electronic and optical properties. Surface Science, 2014, 625, 30-36.	0.8	21
26	Fabrication of stable Ni–Al4Ni3–Al2O3 superhydrophobic surface on aluminum substrate for self-cleaning, anti-corrosive and catalytic performance. Journal of Materials Science, 2018, 53, 1097-1109.	1.7	20
27	Controllable fabrication of stable superhydrophobic surfaces on iron substrates. RSC Advances, 2015, 5, 40657-40667.	1.7	19
28	Fabrication of Composite Material with Pd Nanoparticles and Graphene on Nickel Foam for Its Excellent Electrocatalytic Performance. Electrocatalysis, 2020, 11, 522-535.	1.5	18
29	First-principles study of electronic structures and photocatalytic activity of low-Miller-index surfaces of ZnO. Journal of Applied Physics, 2013, 113, 034903.	1.1	16
30	The fabrication of graphene/polydopamine/nickel foam composite material with excellent electrochemical performance as supercapacitor electrode. Journal of Solid State Chemistry, 2018, 258, 401-409.	1.4	16
31	A robust and repairable superhydrophobic Co ₅ Zn ₂₁ alloy surface on a zinc substrate. New Journal of Chemistry, 2018, 42, 5408-5414.	1.4	14
32	Fabrication of stable homogeneous superhydrophobic HDPE/graphene oxide surfaces on zinc substrates. RSC Advances, 2016, 6, 29823-29829.	1.7	13
33	A reliable filter for oil-water separation: Bismuth coated superhydrophobic/superoleophilic iron mesh. Journal of Alloys and Compounds, 2018, 769, 576-587.	2.8	13
34	Fabrication of CuZn5–ZnO–CuO micro–nano binary superhydrophobic surfaces of Cassie–Baxter and Gecko model on zinc substrates. Materials Chemistry and Physics, 2012, 134, 657-663.	2.0	12
35	First-principles study of structural, electronic, and optical properties of the rutile TiO2(011)-2×1 surface. Surface Science, 2014, 621, 88-93.	0.8	12
36	Fabrication of bismuth superhydrophobic surface on zinc substrate. Journal of Solid State Chemistry, 2018, 262, 26-37.	1.4	12

SHIXIANG LU

#	Article	IF	CITATIONS
37	Fabrication of a Pt nanoparticle surface on an aluminum substrate to achieve excellent superhydrophobicity and catalytic activity. New Journal of Chemistry, 2019, 43, 6069-6079.	1.4	12
38	Robust dendritic Ag–Fe ₂ O ₃ /Fe surfaces with exquisite catalytic properties. New Journal of Chemistry, 2016, 40, 8897-8904.	1.4	11
39	Fabrication of stable Ir-ZnO/Zn superhydrophobic surface on zinc substrate for its properties and application. Journal of Alloys and Compounds, 2017, 699, 489-497.	2.8	11
40	Synthesis of tin superhydrophobic surfaces on zinc substrates. RSC Advances, 2014, 4, 39197.	1.7	9
41	Fabrication of Ag-Fe3O4/Fe superhydrophobic surface on galvanic sheet for its application. Journal of Solid State Chemistry, 2018, 266, 121-132.	1.4	9
42	Synthesis of gold/polydopamine composite surfaces on glass substrates for localized surface plasmon resonance and catalysis. Applied Organometallic Chemistry, 2017, 31, e3785.	1.7	9
43	Fabrication of graphene/copper–nickel foam composite for high performance supercapacitors. New Journal of Chemistry, 2018, 42, 9455-9462.	1.4	8
44	The hydroxylated and reduced rutile TiO2(011)-2×1 surfaces: A first-principles study. Surface Science, 2014, 628, 126-131.	0.8	6
45	Fabrication of Pd nanoparticles on Al substrate with excellent superhydrophobicity and photocatalytic activity. Journal of Physics and Chemistry of Solids, 2021, 148, 109704.	1.9	6
46	Fabrication and simulation of a layered ultrahigh thermal conductive material made of self-assembled graphene and polydopamine on a copper substrate. RSC Advances, 2021, 11, 34676-34687.	1.7	6
47	Structures, electron affinities, and vibrational frequencies of the mono-, di-substituted SF6 radicals. Computational and Theoretical Chemistry, 2008, 863, 28-32.	1.5	5
48	The fabrication composite material of bimetallic micro/nanostructured palladium–platinum alloy and graphene on nickel foam for the enhancement of electrocatalytic activity. New Journal of Chemistry, 2021, 45, 6550-6559.	1.4	5
49	Fabrication of composite material of RuCo ₂ O ₄ and graphene on nickel foam for supercapacitor electrodes. RSC Advances, 2022, 12, 15508-15516.	1.7	5
50	Fabrication of a composite material of Gd ₂ O ₃ , Co ₃ O ₄ and graphene on nickel foam for high-stability supercapacitors. New Journal of Chemistry, 2022, 46, 12184-12195.	1.4	5
51	Structures, vibrational frequencies, and electron affinities of SF5On/SF5Onâ~' (n=1–3). Computational and Theoretical Chemistry, 2009, 900, 77-83.	1.5	4
52	LSDA+U calculations of the electronic and optical properties of rutile TiO2(110) vs (011)-2×1 surfaces. Computational Materials Science, 2014, 90, 1-6.	1.4	4
53	Fabrication of Cu–CuO–Fe2O3/Fe anti-sticky and superhydrophobic surfaces on an iron substrate with mechanical abrasion resistance and corrosion resistance. New Journal of Chemistry, 2017, 41, 5205-5214.	1.4	4
54	Fabrication of superhydrophobic Pt 3 Fe/Fe surface for its application. Journal of Solid State Chemistry, 2017, 254, 14-24.	1.4	4

SHIXIANG LU

#	Article	IF	CITATIONS
55	Synthesis of a Pt/reduced graphene oxide/polydopamine composite material for localized surface plasmon resonance and methanol electrocatalysis. New Journal of Chemistry, 2018, 42, 19458-19466.	1.4	4
56	Fabrication of stable superhydrophobic bismuth material on the aluminum substrate with high photocatalytic activity. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	4
57	Preparation of ultrahigh thermally conductive materials of graphene composites by electrophoresis on carbon fiber. Journal of Materials Science, 2022, 57, 4210-4220.	1.7	4
58	Preparation and application of a flower-rod-like Bi2S3/Co3O4/rGO/nickel foam supercapacitor electrode. New Journal of Chemistry, 2022, 46, 857-867.	1.4	4
59	Fabrication of an ultra-stable composite electrode material of La ₂ O ₃ /Co ₃ O ₄ /graphene on nickel foam for high-performance supercapacitors. New Journal of Chemistry, 2022, 46, 7202-7211.	1.4	2
60	Fabrication of stable ZnO/Zn–Al/Al2O3 superhydrophobic material on aluminum substrate for high photocatalytic and antibacterial activity. Chemical Papers, 2022, 76, 5159-5175.	1.0	2
61	Fabrication and Simulation of a Layered Ultrahigh Thermally Conductive Material of Lamellar Stacking Graphene and Polydopamine on an Aluminum Substrate. ACS Omega, 2022, 7, 4267-4276.	1.6	1