List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4223482/publications.pdf Version: 2024-02-01

		47006	76900
201	7,404	47	74
papers	citations	h-index	g-index
233 all docs	233 docs citations	233 times ranked	4511 citing authors

ΙΙΔΝΙΙΝ ΗΔΝ

#	Article	IF	CITATIONS
1	Modern Approaches for Asymmetric Construction of Carbon–Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chemical Reviews, 2018, 118, 3887-3964.	47.7	476
2	Fluorineâ€Containing Drugs Approved by the FDA in 2018. Chemistry - A European Journal, 2019, 25, 11797-11819.	3.3	341
3	Chemical Aspects of Human and Environmental Overload with Fluorine. Chemical Reviews, 2021, 121, 4678-4742.	47.7	202
4	Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chemical Society Reviews, 2018, 47, 1307-1350.	38.1	196
5	Next generation organofluorine containing blockbuster drugs. Journal of Fluorine Chemistry, 2020, 239, 109639.	1.7	179
6	Fluorine-containing drugs approved by the FDA in 2019. Chinese Chemical Letters, 2020, 31, 2401-2413.	9.0	153
7	Applications of fluorine-containing amino acids for drug design. European Journal of Medicinal Chemistry, 2020, 186, 111826.	5.5	150
8	Cu-Catalyzed Deoxygenative C2-Sulfonylation Reaction of Quinoline <i>N</i> -Oxides with Sodium Sulfinate. Organic Letters, 2016, 18, 4144-4147.	4.6	135
9	Ni-catalyzed deaminative cross-electrophile coupling of Katritzky salts with halides via C─N bond activation. Science Advances, 2019, 5, eaaw9516.	10.3	125
10	Recent Advances on the Electrochemical Difunctionalization of Alkenes/Alkynes. Chinese Journal of Chemistry, 2019, 37, 292-301.	4.9	122
11	Merging Photoredox and Copper Catalysis: Enantioselective Radical Cyanoalkylation of Styrenes. ACS Catalysis, 2018, 8, 7489-7494.	11.2	116
12	Iron-Catalyzed Cross-Dehydrogenative Coupling Esterification of Unactive C(sp ³)–H Bonds with Carboxylic Acids for the Synthesis of α-Acyloxy Ethers. Journal of Organic Chemistry, 2014, 79, 3847-3855.	3.2	107
13	Synthesis of Chiral Sulfonyl Lactones via Copperâ€Catalyzed Asymmetric Radical Reaction of DABCOâ‹(SO ₂). Advanced Synthesis and Catalysis, 2018, 360, 1060-1065.	4.3	104
14	Ni-Catalyzed Reductive Cross-Coupling of Amides with Aryl Iodide Electrophiles via C–N Bond Activation. Organic Letters, 2017, 19, 2536-2539.	4.6	101
15	Assembly of Fluorinated Quaternary Stereogenic Centers through Catalytic Enantioselective Detrifluoroacetylative Aldol Reactions. Angewandte Chemie - International Edition, 2015, 54, 6019-6023.	13.8	97
16	Biomimetic Transamination – a Metal-Free Alternative to the Reductive Amination. Application for Generalized Preparation of Fluorine-Containing Amines and Amino Acids. Current Organic Synthesis, 2011, 8, 281-294.	1.3	94
17	The self-disproportionation of enantiomers (SDE): a menace or an opportunity?. Chemical Science, 2018, 9, 1718-1739.	7.4	93
18	Self-Disproportionation of Enantiomers via Sublimation; New and Truly Green Dimension in Optical Purification. Current Organic Synthesis, 2011, 8, 310-317.	1.3	91

#	Article	IF	CITATIONS
19	Metal-free oxidative C(sp ³)–H bond functionalization of alkanes and alkylation-initiated radical 1,2-aryl migration in α,α-diaryl allylic alcohols. Chemical Communications, 2015, 51, 599-602.	4.1	91
20	Electrochemical oxidative radical oxysulfuration of styrene derivatives with thiols and nucleophilic oxygen sources. Green Chemistry, 2018, 20, 3444-3449.	9.0	88
21	Metalâ€Free Preparation of Cycloalkyl Aryl Sulfides <i>via</i> Diâ€ <i>tert</i> â€butyl Peroxideâ€Promoted Oxidative C(<i>sp</i> ³)H Bond Thiolation of Cycloalkanes. Advanced Synthesis and Catalysis, 2014, 356, 2719-2724.	4.3	81
22	Tailorâ€Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry - A European Journal, 2020, 26, 11349-11390.	3.3	81
23	Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chinese Chemical Letters, 2021, 32, 3342-3354.	9.0	79
24	Visible-Light Photoredox Catalyzed Oxidative/Reductive Cyclization Reaction of <i>N</i> -Cyanamide Alkenes for the Synthesis of Sulfonated Quinazolinones. Organic Letters, 2017, 19, 4798-4801.	4.6	75
25	Sunlight-promoted cyclization versus decarboxylation in the reaction of alkynoates with N-iodosuccinimide: easy access to 3-iodocoumarins. Green Chemistry, 2016, 18, 3935-3939.	9.0	74
26	Cu-Catalyzed C(sp ³)–H Bond Activation Reaction for Direct Preparation of Cycloallyl Esters from Cycloalkanes and Aromatic Aldehydes. Organic Letters, 2014, 16, 2530-2533.	4.6	71
27	Metal-Free Oxidative C(sp3)–H Bond Functionalization of Alkanes and Conjugate Addition to Chromones. Organic Letters, 2014, 16, 5342-5345.	4.6	70
28	Fluorine-containing drugs approved by the FDA in 2021. Chinese Chemical Letters, 2023, 34, 107578.	9.0	67
29	Recent Progress in the in situ DetrifluoroÂacetylative Generation of Fluoro Enolates and Their Reactions with Electrophiles. European Journal of Organic Chemistry, 2015, 2015, 6401-6412.	2.4	66
30	Hydroxyalkylation-Initiated Radical Cyclization of N-Allylbenzamide for Direct Construction of Isoquinolinone. Organic Letters, 2015, 17, 2724-2727.	4.6	63
31	Chemistry of electrochemical oxidative reactions of sulfinate salts. Green Chemistry, 2020, 22, 3028-3059.	9.0	63
32	Transition-metal-free oxidative reaction of hydrazines and potassium metabisulfite for preparation of sulfonohydrazides. Organic Chemistry Frontiers, 2017, 4, 1313-1317.	4.5	62
33	Iron-catalyzed alkenylation of cyclic ethers via decarboxylative sp3(C)–sp2(C) coupling. Tetrahedron Letters, 2013, 54, 6507-6510.	1.4	61
34	Photoredox-Catalyzed Cascade Difluoroalkylation and Intramolecular Cyclization for Construction of Fluorinated Î ³ -Butyrolactones. Journal of Organic Chemistry, 2017, 82, 9824-9831.	3.2	61
35	<i>N</i> -lodosuccinimide-Promoted Cascade Trifunctionalization of Alkynoates: Access to 1,1-Diiodoalkenes. Organic Letters, 2016, 18, 712-715.	4.6	59
36	Generalized access to fluorinated β-keto amino compounds through asymmetric additions of α,α-difluoroenolates to CF3-sulfinylimine. Organic and Biomolecular Chemistry, 2014, 12, 7836-7843.	2.8	58

#	Article	IF	CITATIONS
37	Access to Alkyl-Substituted Lactone via Photoredox-Catalyzed Alkylation/Lactonization of Unsaturated Carboxylic Acids. Organic Letters, 2017, 19, 5900-5903.	4.6	58
38	An electrochemical oxidative homo-coupling reaction of imidazopyridine heterocycles to biheteroaryls. Green Chemistry, 2018, 20, 583-587.	9.0	56
39	Detrifluoroacetylative in Situ Generation of Free 3-Fluoroindolin-2-one-Derived Tertiary Enolates: Design, Synthesis, and Assessment of Reactivity toward Asymmetric Mannich Reactions. Organic Letters, 2016, 18, 3270-3273.	4.6	55
40	Asymmetric synthesis of quaternary α-fluoro-β-keto-amines via detrifluoroacetylative Mannich reactions. Chemical Communications, 2015, 51, 9149-9152.	4.1	53
41	Oxidative Difunctionalization of Alkynoates through Alkylation and Migration Decarboxylative Arylation. Organic Letters, 2015, 17, 5524-5527.	4.6	52
42	<i>N</i> â€ <i>tert</i> â€Butylsulfinylâ€3,3,3â€trifluoroacetaldimine: Versatile Reagent for Asymmetric Synthesis of Trifluoromethylâ€Containing Amines and Amino Acids of Pharmaceutical Importance. European Journal of Organic Chemistry, 2016, 2016, 5917-5932.	2.4	52
43	A facile process for the asymmetric synthesis of β-trifluoromethylated β-amino ketones via addition of ketone enolates to sulfinylimine. Organic and Biomolecular Chemistry, 2011, 9, 1402.	2.8	51
44	Asymmetric Mannich reactions of imidazo[2,1-b]thiazole-derived nucleophiles with (SS)-N-tert-butanesulfinyl (3,3,3)-trifluoroacetaldimine. Organic and Biomolecular Chemistry, 2013, 11, 8018.	2.8	49
45	A comprehensive examination of the self-disproportionation of enantiomers (SDE) of chiral amides via achiral, laboratory-routine, gravity-driven column chromatography. RSC Advances, 2015, 5, 2988-2993.	3.6	49
46	LDA-promoted asymmetric synthesis of β-trifluoromethyl-β-amino indanone derivatives with virtually complete stereochemical outcome. RSC Advances, 2014, 4, 4763-4768.	3.6	48
47	Copper-Catalyzed Multicomponent Reaction of DABCO·(SO2)2, Alcohols, and Aryl Diazoniums for the Synthesis of Sulfonic Esters. Journal of Organic Chemistry, 2018, 83, 4674-4680.	3.2	48
48	Electrochemical Alkynyl/Alkenyl Migration for the Radical Difunctionalization of Alkenes. Chemistry - A European Journal, 2018, 24, 17205-17209.	3.3	48
49	Electrochemical Dehydrogenative Phosphorylation of Alcohols for the Synthesis of Organophosphinates. Journal of Organic Chemistry, 2019, 84, 949-956.	3.2	47
50	Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinyl carboxylic acids via a radical process. Beilstein Journal of Organic Chemistry, 2013, 9, 1718-1723.	2.2	45
51	Operationally convenient method for preparation of sulfonamides containing α,α-difluoro-β-amino carbonyl moiety. Tetrahedron Letters, 2014, 55, 5908-5910.	1.4	44
52	Palladium atalyzed Asymmetric Allylic Alkylations of Colby Proâ€Enolates with MBH Carbonates: Enantioselective Access to Quaternary Câ^'F Oxindoles. Chemistry - A European Journal, 2018, 24, 8994-8998.	3.3	42
53	Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Advanced Synthesis and Catalysis, 2021, 363, 2912-2968.	4.3	42
54	Catalyst-Free Intramolecular Oxidative Cyclization of <i>N</i> -Allylbenzamides: A New Route to 2,5-Substituted Oxazoles. Organic Letters, 2012, 14, 4766-4769.	4.6	41

#	Article	IF	CITATIONS
55	Metal-Free Oxidative Functionalization of a C(sp ³)–H Bond Adjacent to Nitrogen and Intramolecular Aromatic Cyclization for the Preparation of 6-Amidophenanthridines. Journal of Organic Chemistry, 2015, 80, 3151-3158.	3.2	41
56	Copperâ€Catalyzed Aerobic Oxidative Reaction of Sulfonyl Hydrazides with Alcohols: An Easy Access to Sulfinates. Chemistry - an Asian Journal, 2016, 11, 478-481.	3.3	41
57	Copperâ€Catalyzed Selective Aerobic Oxidative Cascade Reaction of Hydrazines, DABSO, and Amines for the Direct Synthesis of Sulfonamides. Asian Journal of Organic Chemistry, 2017, 6, 153-156.	2.7	40
58	Asymmetric Synthesis of Tailor-Made Amino Acids Using Chiral Ni(II) Complexes of Schiff Bases. An Update of the Recent Literature. Molecules, 2020, 25, 2739.	3.8	40
59	Concise and scalable asymmetric synthesis of 5-(1-amino-2,2,2-trifluoroethyl)thiazolo[3,2-b][1,2,4]triazoles. Organic and Biomolecular Chemistry, 2014, 12, 2108-2113.	2.8	39
60	Synthesis of Trifluoromethyl-Containing Vicinal Diamines by Asymmetric Decarboxylative Mannich Addition Reactions. Journal of Organic Chemistry, 2015, 80, 3187-3194.	3.2	39
61	Cyclic tailor-made amino acids in the design of modern pharmaceuticals. European Journal of Medicinal Chemistry, 2020, 208, 112736.	5.5	39
62	NH-type of chiral Ni(ii) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications. Organic and Biomolecular Chemistry, 2014, 12, 1278.	2.8	37
63	Concise Asymmetric Synthesis of βâ€Trifluoromethylated α,βâ€Diamino Esters through Addition Reactions of Glycine Esters to CF ₃ â€Sulfinylimine. European Journal of Organic Chemistry, 2014, 2014, 1445-1451.	2.4	35
64	Copper(II) Acetate atalyzed Hydroxysulfenylationâ€Initiated Lactonization of Unsaturated Carboxylic Acids with Oxygen as Oxidant and Oxygenation Reagent. Advanced Synthesis and Catalysis, 2017, 359, 1684-1690.	4.3	34
65	The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives. Amino Acids, 2019, 51, 865-889.	2.7	34
66	<i>N</i> -lodosuccinimide-Initiated Spirocyclopropanation of Styrenes with 1,3-Dicarbonyl Compound for the Synthesis of Spirocyclopropanes. Journal of Organic Chemistry, 2016, 81, 6546-6553.	3.2	33
67	Asymmetric Friedel–Crafts Reactions of <i>N</i> - <i>tert</i> Butylsulfinyl-3,3,3-trifluoroacetaldimines: General Access to Enantiomerically Pure Indoles Containing a 1-Amino-2,2,2-trifluoroethyl Group. Journal of Organic Chemistry, 2014, 79, 7677-7681.	3.2	31
68	Cascade alkylarylation of substituted <i>N</i> -allylbenzamides for the construction of dihydroisoquinolin-1(2 <i>H</i>)-ones and isoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-diones. Beilstein Journal of Organic Chemistry, 2016, 12, 301-308.	2.2	31
69	Tailor-made amino acids in the design of small-molecule blockbuster drugs. European Journal of Medicinal Chemistry, 2021, 220, 113448.	5.5	31
70	Synthesis of α,α-difluoro-β-amino carbonyl-containing sulfonamides and related compounds. Journal of Fluorine Chemistry, 2015, 172, 13-21.	1.7	30
71	Largeâ€Scale Asymmetric Synthesis of Fmocâ€(<i>S</i>)â€2â€Aminoâ€6,6,6â€Trifluorohexanoic Acid. Chemistry 2019, 8, 701-704.	Open, 1.9	29
72	Catalytic asymmetric detrifluoroacetylative aldol reactions of aliphatic aldehydes for construction of C-F quaternary stereogenic centers. Journal of Fluorine Chemistry, 2016, 184, 28-35.	1.7	28

#	Article	IF	CITATIONS
73	Expedient Asymmetric Synthesis of (<i>S</i>)-2-Amino-4,4,4-trifluorobutanoic Acid via Alkylation of Chiral Nucleophilic Glycine Equivalent. Organic Process Research and Development, 2019, 23, 629-634.	2.7	28
74	Asymmetric Morita–Baylis–Hillman reaction of isatins with α,β-unsaturated γ-butyrolactam as the nucleophile. RSC Advances, 2013, 3, 10127.	3.6	27
75	Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by sequential SN2–SN2′ dialkylation of (R)-N-(benzyl)proline-derived glycine Schiff base Ni(ii) complex. RSC Advances, 2015, 5, 1051-1058.	3.6	27
76	Catalytic cascade aldol–cyclization of tertiary ketone enolates for enantioselective synthesis of keto-esters with a C–F quaternary stereogenic center. Organic and Biomolecular Chemistry, 2016, 14, 7295-7303.	2.8	27
77	Synthesis of Trisubstituted Vinyl Sulfides via Oxidative Thiolation Initiated Cascade Reaction of Alkynoates with Thiols. Journal of Organic Chemistry, 2016, 81, 9470-9475.	3.2	27
78	Radical reactions of aryl alkynoates in organic synthesis: Recent advances. Tetrahedron Letters, 2018, 59, 1309-1316.	1.4	27
79	Development of Hamari Ligands for Practical Asymmetric Synthesis of Tailor-Made Amino Acids. ACS Omega, 2019, 4, 18942-18947.	3.5	27
80	Electrochemical Alkoxysulfonylation Difunctionalization of Styrene Derivatives Using Sodium Sulfinates as Sulfonyl Sources. ACS Omega, 2019, 4, 14353-14359.	3.5	26
81	A convenient enantioselective decarboxylative aldol reaction to access chiral α-hydroxy esters using β-keto acids. Beilstein Journal of Organic Chemistry, 2014, 10, 969-974.	2.2	25
82	Large-scale Mannich-type reactions of (SS)-N-tert-butanesulfinyl-(3,3,3)-trifluoroacetaldimine with C-nucleophiles. Journal of Fluorine Chemistry, 2014, 165, 67-75.	1.7	25
83	Introducing a new radical trifluoromethylation reagent. Chemical Communications, 2015, 51, 5967-5970.	4.1	25
84	Chemistry of detrifluoroacetylatively <i>in situ</i> generated fluoro-enolates. Organic and Biomolecular Chemistry, 2019, 17, 762-775.	2.8	25
85	Catalytic Diamination of Alkenes using <i>N</i> , <i>N</i> â€Dibromoâ€ <i>p</i> â€toluenesulfonamide as Electrophile and Nitriles as Nucleophiles. Chemical Biology and Drug Design, 2008, 71, 71-77.	3.2	24
86	New Chiral Reagent for Installation of Pharmacophoric (<i>S</i>)―or (<i>R</i>)â€2â€(Alkoxyphosphono)â€1â€aminoâ€2,2â€difluoroethyl Groups. Chemistry - A European Journal, 20 7036-7040.)1 6, 22,	24
87	Catalytic asymmetric aldol addition reactions of 3-fluoro-indolinone derived enolates. Organic and Biomolecular Chemistry, 2017, 15, 311-315.	2.8	24
88	Convenient Asymmetric Synthesis of Fmoc-(S)-6,6,6-Trifluoro-Norleucine. Symmetry, 2019, 11, 578.	2.2	24
89	Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. Amino Acids, 2020, 52, 1227-1261.	2.7	24
90	Integration of MIL-101-NH ₂ into Cellulosic Foams for Efficient Cr(VI) Reduction under Visible Light. Industrial & Engineering Chemistry Research, 2021, 60, 12220-12227.	3.7	24

#	Article	IF	CITATIONS
91	Development and Evaluation of Different Methods for Preparation of Fluorineâ€Containing (<i>R</i>)― and (<i>S</i>)â€ <i>N</i> â€ <i>tert</i> â€Butanesulfinylâ€"aldimines. ChemistrySelect, 2016, 1, 4435-4439.	1.5	23
92	Asymmetric synthesis of C–F quaternary α-fluoro-β-amino-indolin-2-ones via Mannich addition reactions; facets of reactivity, structural generality and stereochemical outcome. RSC Advances, 2017, 7, 5679-5683.	3.6	23
93	The selfâ€disproportionation of enantiomers (SDE): The effect of scaling down, potential problems versus prospective applications, possible new occurrences, and unrealized opportunities?. Electrophoresis, 2019, 40, 1869-1880.	2.4	23
94	Metalâ€Free Preparation of 6â€Alkylthiophenanthridines via Oxidative CS and CC Bond Formation from 2â€Isocyanobiphenyls and Disulfides. Asian Journal of Organic Chemistry, 2014, 3, 1266-1269.	2.7	22
95	Mannichâ€Type Addition Reactions between Lithium Derivatives of Benzo[<i>d</i>]thiazoles and <i>N</i> â€ <i>tert</i> â€Butylsulfinylâ€3,3,3â€trifluoroacetaldimine: Convenient Generalized Synthesis of Bis(benzothiazole)s. European Journal of Organic Chemistry, 2014, 2014, 2429-2433.	2.4	22
96	Highly efficient and generalized asymmetric synthesis of quaternary stereogenic carbon-containing β-amino indanones/indanoles via Mannich-type additions between 1-indanones and N-tert-butanesulfinylketimines. Organic and Biomolecular Chemistry, 2014, 12, 4620-4627.	2.8	22
97	Detrifluoroacetylative generation and chemistry of fluorine containing tertiary enolates. Journal of Fluorine Chemistry, 2017, 198, 2-9.	1.7	22
98	Recent progress in the application of fluorinated chiral sulfinimine reagents. Journal of Fluorine Chemistry, 2018, 216, 57-70.	1.7	22
99	Practical Method for Preparation of (<i>S</i>)-2-Amino-5,5,5-trifluoropentanoic Acid via Dynamic Kinetic Resolution. ACS Omega, 2019, 4, 11844-11851.	3.5	22
100	In Situ Generation of Unstable Difluoromethylphosphonate-Containing Diazoalkanes and Their Use in [3 + 2] Cycloaddition Reactions with Vinyl Sulfones. Organic Letters, 2021, 23, 1130-1134.	4.6	22
101	Palladium atalyzed C3 Acylation of Benzofurans and Benzothiophenes with Aromatic Aldehydes by Crossâ€Dehydrogenative Coupling Reactions. Asian Journal of Organic Chemistry, 2013, 2, 1044-1047.	2.7	21
102	Ni-catalyzed asymmetric decarboxylative Mannich reaction for the synthesis of β-trifluoromethyl-β-amino ketones. RSC Advances, 2015, 5, 26811-26814.	3.6	20
103	Design of (β-diazo-α,α-difluoroethyl)phosphonates and their application as masked carbenes in visible light-promoted coupling reactions with sulfonic acids. Organic Chemistry Frontiers, 2021, 8, 767-772.	4.5	20
104	Recommended Tests for the Self-Disproportionation of Enantiomers (SDE) to Ensure Accurate Reporting of the Stereochemical Outcome of Enantioselective Reactions. Molecules, 2021, 26, 2757.	3.8	20
105	New pharmaceuticals approved by FDA in 2020: Smallâ€molecule drugs derived from amino acids and related compounds. Chirality, 2022, 34, 86-103.	2.6	20
106	Asymmetric synthesis of (3S,1â€2S)-3-(1-amino-2,2,2-trifluoroethyl)-1-(alkyl)-indolin-2-one derivatives by addition of (S)-N-t-butylsulfinyl-3,3,3-trifluoroacetaldimine to 1-(alkyl)-indolin-2-ones. Organic and Biomolecular Chemistry, 2014, 12, 7909-7913.	2.8	19
107	Asymmetric Synthesis of Quaternary βâ€Perfluorophenylâ€Î²â€aminoâ€indolinâ€2â€ones. European Journal of Organic Chemistry, 2017, 2017, 1540-1546.	2.4	19
108	Catalytic Enantioselective Michael Addition Reactions of Tertiary Enolates Generated by Detrifluoroacetylation. Chemistry - A European Journal, 2017, 23, 11221-11225.	3.3	19

#	Article	IF	CITATIONS
109	A Jak2-selective inhibitor potently reverses the immune suppression by modulating the tumor microenvironment for cancer immunotherapy. Biochemical Pharmacology, 2017, 145, 132-146.	4.4	19
110	Chemoselective S _N 2′ Allylations of Detrifluoroacetylatively In Situ Generated 3-Fluoroindolin-2-one-Derived Tertiary Enolates with Morita–Baylis–Hillman Carbonates. Journal of Organic Chemistry, 2017, 82, 13663-13670.	3.2	19
111	Electrosynthesis of functionalized tetrahydrocarbazoles <i>via</i> sulfonylation triggered cyclization reaction of indole derivatives. Green Chemistry, 2021, 23, 3256-3260.	9.0	19
112	Catalytic Enantioselective Cyanoâ€Trifluoromethylation of Styrenes. ChemistrySelect, 2017, 2, 1129-1132.	1.5	17
113	Large-Scale Synthesis of the Glycine Schiff Base Ni(II) Complex Derived from (<i>S</i>)- and (<i>R</i>)- <i>N</i> -(2-Benzoyl-4-chlorophenyl)-1-[(3,4-dichlorophenyl)methyl]-2-pyrrolidinecarboxamide. Organic Process Research and Development, 2020, 24, 294-300.	2.7	17
114	Esterification of Carboxylic Acids with (β-Diazo-α,α-difluoroethyl)phosphonates under Photochemical Conditions. Acta Chimica Sinica, 2021, 79, 747.	1.4	17
115	Visible-Light-Irradiated Cascade Reaction of Indole-Tethered Alkenes to Access Tetracyclic Tetrahydro-Î ³ -carbolines. Organic Letters, 2022, 24, 2630-2635.	4.6	17
116	KOH-catalyzed highly efficient aminohalogenation of β-nitrostyrenes with t-butyl N,N-dichlorocarbamate as nitrogen/halogen source. RSC Advances, 2011, 1, 429.	3.6	16
117	Asymmetric Synthesis of 4,4â€(Difluoro)glutamic Acid via Chiral Ni(II)â€Complexes of Dehydroalanine Schiff Bases. Effect of the Chiral Ligands Structure on the Stereochemical Outcome. ChemistryOpen, 2020, 9, 93-96.	1.9	16
118	General asymmetric synthesis of 2,2,2-trifluoro-1-(1H-indol-3- and -2-yl)ethanamines. Journal of Fluorine Chemistry, 2015, 170, 57-65.	1.7	15
119	DBU-promoted cyclization of vinyl isocyanides with ethers via the functionalization of a C(sp3)–H bond for the synthesis of isoquinolines. RSC Advances, 2015, 5, 64961-64965.	3.6	15
120	Asymmetric Michael Addition in Synthesis of \hat{I}^2 -Substituted GABA Derivatives. Molecules, 2022, 27, 3797.	3.8	15
121	Copper-catalyzed aminobromination/elimination process: an efficient access to α,β-unsaturated vicinal haloamino ketones and esters. Organic and Biomolecular Chemistry, 2010, 8, 4236.	2.8	14
122	Asymmetric C–C Bond Formation between Chiral <i>N</i> â€Phosphonyl Imines and a Nickel(II) omplexed Glycine Schiff Base Provides Efficient Synthesis of α,βâ€ <i>syn</i> â€Diamino Acid Derivatives. European Journal of Organic Chemistry, 2013, 2013, 4744-4747.	2.4	14
123	Diastereoselective Regiodivergent Mannich Versus Tandem Mannich yclization Reactions. Advanced Synthesis and Catalysis, 2017, 359, 4267-4273.	4.3	14
124	Copper atalyzed Oxidative Reaction of βâ€Keto Sulfones with Alcohols via Câ^'S Bond Cleavage: Reaction Development and Mechanism Study. Chemistry - an Asian Journal, 2018, 13, 404-408.	3.3	14
125	Asymmetric Vinylogous Mannichâ€īype Addition of α,αâ€Dicyanoalkenes to αâ€Fluoroalkyl Sulfinyl Imines. Advanced Synthesis and Catalysis, 2018, 360, 366-373.	4.3	14
126	Detrifluoroacetylative in Situ Generated Cyclic Fluorinated Enolates for the Preparation of Compounds Featuring a C–F Stereogenic Center. ACS Omega, 2019, 4, 19505-19512.	3.5	14

#	Article	IF	CITATIONS
127	A Call for a Change in Policy Regarding the Necessity for SDE Tests to Validate the Veracity of the Outcome of Enantioselective Syntheses, the Inherent Chiral State of Natural Products, and Other Cases Involving Enantioenriched Samples. Molecules, 2021, 26, 3994.	3.8	14
128	Advances in the Development of Trifluoromethoxylation Reagents. Symmetry, 2021, 13, 2380.	2.2	14
129	Hydrogen-bonding self-assembly of two dimensional (2D) layer structures generating metal–organic nanotubes. CrystEngComm, 2011, 13, 734-737.	2.6	13
130	Ultrasound-Promoted Ligand-Free Heck Reaction in Water. Synthetic Communications, 2011, 41, 1464-1471.	2.1	13
131	The self-disproportionation of enantiomers (SDE) via column chromatography of β-amino-α,α-difluorophosphonic acid derivatives. Amino Acids, 2019, 51, 1377-1385.	2.7	13
132	Perfluoro-3-ethyl-2,4-dimethyl-3-pentyl persistent radical: A new reagent for direct, metal-free radical trifluoromethylation and polymer initiation. Journal of Fluorine Chemistry, 2019, 227, 109370.	1.7	13
133	Facile synthesis of (β-chlorodifluoroethyl)phosphonates via chlorination reaction of difluoroalkyl diazo derivatives with HCl. Chinese Chemical Letters, 2022, 33, 2429-2432.	9.0	13
134	Recent Advances on the Halo- and Cyano-Trifluoromethylation of Alkenes and Alkynes. Molecules, 2021, 26, 7221.	3.8	13
135	Assembly of tetracyclic tetrahydrocarbazoles <i>via</i> a visible-light promoted cascade process. Organic Chemistry Frontiers, 2022, 9, 2516-2521.	4.5	13
136	The combination of benzamides/NCS as nitrogen/halogen sources for aminohalogenation of β-nitrostyrenes resulting in dichlorinated haloamides. Science China Chemistry, 2010, 53, 1946-1952.	8.2	12
137	The combination of TsNBr2/TsNH2 as the nitrogen/halo source for the aminobromination of β-methyl-β-nitrostyrenes catalyzed by Mn(OAc)2. Tetrahedron Letters, 2010, 51, 2745-2747.	1.4	12
138	Detrifluoroacetylative cascade reactions of bicyclic fluoro-enolates with ortho -phthalaldehyde: Aspects of reactivity, diastereo- and enantioselectivity. Journal of Fluorine Chemistry, 2017, 196, 14-23.	1.7	12
139	Kitamura Electrophilic Fluorination Using HF as a Source of Fluorine. Molecules, 2020, 25, 2116.	3.8	12
140	Visible-light-irradiated tandem sulfonylation/cyclization of indole tethered alkenes for the synthesis of tetrahydrocarbazoles. Chinese Chemical Letters, 2022, 33, 4886-4890.	9.0	12
141	Cinchona Alkaloidâ€catalyzed Asymmetric Direct Mannich Reaction of Malononitrile to Imine for Synthesis of <i>β</i> â€Amino Malononitrile. Chinese Journal of Chemistry, 2012, 30, 2333-2337.	4.9	11
142	Na ₃ PO ₄ -catalyzed aminochlorination reaction of β-nitrostyrenes in water. RSC Advances, 2012, 2, 151-155.	3.6	11
143	Aminochlorination reaction with N-chlorophthalimide as a new nitrogen/chlorine source resulting in α-amino derivatives. Tetrahedron, 2012, 68, 6198-6203.	1.9	11
144	Asymmetric synthesis of β-trifluoromethyl-β-amino acids, including highly sterically constrained α,α-dialkyl derivatives. Tetrahedron, 2015, 71, 9550-9556.	1.9	11

#	Article	IF	CITATIONS
145	Metal-free nitroxyl radical-mediated β-C(sp3)–H amination of saturated ketones with heteroaryl halides: multiple roles of TEMPO. Chemical Communications, 2017, 53, 2958-2961.	4.1	11
146	Mannich-type addition of 1,3-dicarbonyl compounds to chiral <i>tert</i> -butanesulfinyltrifluoroacetaldimines. Mechanistic aspects and chiroptical studies. Organic and Biomolecular Chemistry, 2018, 16, 8742-8750.	2.8	11
147	Preparative Method for Asymmetric Synthesis of (S)-2-Amino-4,4,4-trifluorobutanoic Acid. Molecules, 2019, 24, 4521.	3.8	11
148	Tailorâ€Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Azaâ€Tryptophan Derivatives. Chemistry - A European Journal, 2021, 27, 17510-17528.	3.3	11
149	Intramolecular Appel Reaction of Trifluoromethylated β-Keto Diazos Enabling Assembly of Trifluoromethylpyrazoles. Organic Letters, 2022, 24, 2258-2263.	4.6	11
150	Successful trifluoromethoxy-containing pharmaceuticals and agrochemicals. Journal of Fluorine Chemistry, 2022, 257-258, 109978.	1.7	11
151	Oneâ€Pot Highly Stereoselective Synthesis of Cyano Aziridines via the CuCl atalyzed Aminochlorination of <i>α</i> , <i>β</i> â€Unsaturated Nitriles and Intramolecular S _N 2 Substitution. Chemical Biology and Drug Design, 2010, 76, 392-396.	3.2	10
152	Highly regioselective aminobromination of $\hat{l}\pm,\hat{l}^2$ -unsaturated nitro compounds with benzyl carbamate/N-bromosuccinimide as nitrogen/bromine source. RSC Advances, 2012, 2, 5565.	3.6	10
153	Generalized Approach to Asymmetric Synthesis of βâ€Substituted βâ€Amino Acids Bearing CHF ₂ , CBrF ₂ , and CClF ₂ Groups. Asian Journal of Organic Chemistry, 2015, 4, 1020-1024.	2.7	10
154	Solvent-free, uncatalyzed asymmetric "ene―reactions of N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines: a general approach to enantiomerically pure α-(trifluoromethyl)tryptamines. Organic and Biomolecular Chemistry, 2017, 15, 3930-3937.	2.8	10
155	βâ€Aminoâ€Î³,γâ€difluoroâ€Ï‰â€phosphonoglutamic Acid Derivatives: An Unexplored, Multifaceted Structural ⁻ Tailorâ€Made αâ€Amino Acids. European Journal of Organic Chemistry, 2017, 2017, 3451-3456.	Type of	10
156	Synthesis of Ahod Moiety of Ralstonin A Using Amino Acid Schiff Base Ni(II) omplex Chemistry. Helvetica Chimica Acta, 2020, 103, e2000077.	1.6	10
157	Synthesis of chiral <i>N</i> -phosphinyl α-imino esters and their application in asymmetric synthesis of α-amino esters by reduction. Beilstein Journal of Organic Chemistry, 2014, 10, 653-659.	2.2	9
158	Cyclization reaction of N -allylbenzothioamide for direct construction of thiazole and thiazoline. Tetrahedron Letters, 2015, 56, 4128-4130.	1.4	9
159	The Rutheniumâ€Catalyzed Domino Cross Enyne Metathesis/Ringâ€Closing Metathesis in the Synthesis of Enantioenriched Nitrogenâ€Containing Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 4193-4207.	2.4	9
160	Asymmetric Synthesis of Fluorinated Monoterpenic Alkaloid Derivatives from Chiral Fluoroalkyl Aldimines via the Pausonâ€Khand Reaction. Advanced Synthesis and Catalysis, 2020, 362, 1378-1384.	4.3	9
161	Flurbiprofen: A Study of the Behavior of the Scalemate by Chromatography, Sublimation, and NMR. Symmetry, 2021, 13, 543.	2.2	9
162	Recent Developments in the Asymmetric Detrifluoroacetylative Reactions of in situ Generated Mono-Fluorinated Enolates. Current Organic Chemistry, 2020, 24, 2181-2191.	1.6	9

#	Article	IF	CITATIONS
163	Unusual reactivity of fluoro-enolates with dialkyl azodicarboxylates: Synthesis of isatin-hydrazones. Journal of Fluorine Chemistry, 2017, 203, 99-103.	1.7	8
164	Catalytic enantioselective Michael addition reactions between in situ detrifluoroacetylatively generated 3-fluorooxindole-derived enolates and 1-(1-(phenylsulfonyl)vinylsulfonyl)benzene. Journal of Fluorine Chemistry, 2019, 219, 32-38.	1.7	8
165	A Selectfluor-promoted oxidative reaction of disulfides and amines: access to sulfinamides. Organic and Biomolecular Chemistry, 2020, 18, 3761-3766.	2.8	8
166	[3+2] Cycloaddition reactions of β-diazo-α,α-difluoromethylphosphonates with α,β-unsaturated esters. Journal of Fluorine Chemistry, 2021, 251, 109899.	1.7	8
167	Oneâ€Pot Reaction of (βâ€Aminoâ€Î±,αâ€difluoroethyl)phosphonates with Trifluoromethylated Ketones via Azaâ€Wittig Reagents. Advanced Synthesis and Catalysis, 2022, 364, 1969-1974.	4.3	8
168	Zinc-prolinamide complex catalyzed direct asymmetric aldol reactions in the presence of water. Science China Chemistry, 2010, 53, 2291-2296.	8.2	7
169	Tetrabenzylhafnium as a New Organometallic Reagent for Imine Addition Resulting in αâ€Branched Amines. European Journal of Organic Chemistry, 2011, 2011, 5783-5786.	2.4	7
170	A facile organocatalyzed Michael addition of pyrazolines to α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 2012, 53, 6650-6653.	1.4	7
171	Optical Resolution of Rimantadine. Molecules, 2019, 24, 1828.	3.8	7
172	Michael addition reactions of chiral glycine Schiff base Ni (II)â€complex with 1â€(1â€phenylsulfonyl)benzene. Chirality, 2020, 32, 885-893.	2.6	7
173	Peptidomimetics and Peptide-Based Blockbuster Drugs. Current Organic Chemistry, 2021, 25, 1627-1658.	1.6	7
174	Catalytic Aminohalogenation Reaction of β-Nitrostyrenes with <i>N</i> , <i>N</i> -Dichloro- <i>p</i> -toluenesulfonamide Resulting in Dichlorinated Haloamides with Opposite Regiochemistry to Previous Systems. Synthesis, 2008, 2008, 1570-1574.	2.3	6
175	Asymmetric synthesis of amino-benzothiazol derivatives by additions of 2-lithiated benzothiazoles to (S)-N-t-butylsulfinyl-ketimines. RSC Advances, 2015, 5, 3491-3497.	3.6	6
176	Axially chiral Ni(II) complexes of αâ€amino acids: Separation of enantiomers and kinetics of racemization. Chirality, 2018, 30, 498-508.	2.6	6
177	A novel fluorinated triazole derivative suppresses macrophage activation and alleviates experimental colitis via a Twist1-dependent pathway. Biochemical Pharmacology, 2018, 155, 275-287.	4.4	6
178	Asymmetric Vinylogous Mukaiyamaâ€Mannich Reactions of Heterocyclic Siloxy Dienes with Ellman's Fluorinated Aldimines. Advanced Synthesis and Catalysis, 2019, 361, 3860-3867.	4.3	6
179	Asymmetric Synthesis of αâ€Difluorinated βâ€Amino Sulfones through Detrifluoroacetylative Mannich Reactions. European Journal of Organic Chemistry, 2021, 2021, 3035-3038.	2.4	6
180	Synthesis of Isothiazoles through <i>N</i> -Propargylsulfinylamide: TFA-Promoted Sulfinyl Group-Involved Intramolecular Cyclization. Organic Letters, 2021, 23, 6941-6945.	4.6	6

#	Article	IF	CITATIONS
181	Highly diastereoselective aminobromination of β-methyl-β-nitrostyrenes with t-butyl N,N-dibromocarbamate/t-butyl carbamate as bromine/nitrogen sources. Tetrahedron Letters, 2013, 54, 2781-2784.	1.4	5
182	Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of αâ€amino acid Schiff bases. Chirality, 2019, 31, 401-409.	2.6	5
183	Asymmetric synthesis of (S)â€Î±â€ (octyl)glycine via alkylation of Ni(II) complex of chiral glycine Schiff base. Chirality, 2020, 32, 1354-1360.	2.6	5
184	Asymmetric Mannich reactions of (S)-N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines with yne nucleophiles. Beilstein Journal of Organic Chemistry, 2020, 16, 2671-2678.	2.2	5
185	Asymmetric Synthesis of N â€Fmocâ€(S)â€7â€azaâ€tryptophan via Alkylation of Chiral Nucleophilic Glycine Equivalent. European Journal of Organic Chemistry, 2021, 2021, 2962-2965.	2.4	5
186	Asymmetric synthesis of (S)â€3â€methyleneglutamic acid and its N â€Fmoc derivative via Michael addition–elimination reaction of chiral glycine Ni (II) complex with enol tosylates. Chirality, 2021, 33, 115-123.	2.6	5
187	Tandem 1,5-migration/Michael reactions to prepare adducts of pyrazolone derivatives: protecting group-directed rearrangement. RSC Advances, 2012, 2, 8949.	3.6	4
188	Selectfluor-Promoted Twofold Sulfination of Alcohols for the Synthesis of Sulfinic Ester from Diaryldisulfides. Chinese Journal of Organic Chemistry, 2020, 40, 1926.	1.3	4
189	One-pot stereoselective synthesis of α,β-differentiated diamino esters via the sequence of aminochlorination, aziridination and intermolecular S _N 2 reaction. Beilstein Journal of Organic Chemistry, 2014, 10, 1802-1807.	2.2	3
190	Substituent-controlled preference of carbonyl group–metal coordination in d8 metal complexes with non-symmetric pentadentate ligands. Structural and stereochemical aspects. Dalton Transactions, 2014, 43, 5375-5381.	3.3	3
191	Chromatographic approach to study the configurational stability of Ni(II) complexes of aminoâ€acid Schiff bases possessing stereogenic nitrogen. Chirality, 2019, 31, 328-335.	2.6	3
192	Electrophilic fluorination using PhIO/HF·THF reagent. Journal of Fluorine Chemistry, 2020, 240, 109670.	1.7	3
193	Sulfurationâ€Triggered Radical Cyclization of <i>o</i> â€Cyanoarylacrylamides to 3â€Thiomethylated Quinolineâ€2,4â€dione. ChemistrySelect, 2020, 5, 14534-14537.	1.5	3
194	Frontispiece: Fluorine ontaining Drugs Approved by the FDA in 2018. Chemistry - A European Journal, 2019, 25, .	3.3	2
195	Frontispiece: Tailorâ€Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry - A European Journal, 2020, 26, .	3.3	2
196	Crystal Structure of Diallyl Ether Coordinated Methanesulfonate Copper(I) Complex. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X299-X300.	0.1	1
197	Comparative study of different chiral ligands for dynamic kinetic resolution of amino acids. Chirality, 2021, 33, 685-702.	2.6	1
198	The Role of Fluorine in the Self-Disproportionation of Enantiomers (SDE) Phenomenon of Scalemic Samples of Fluoroorganics. , 2020, , 283-340.		1

#	Article	IF	CITATIONS
199	Aldol Addition-Cyclization Reaction Cascade on a Platform of Chiral Ni(II) Complex of Glycine Schiff Base. Ukrainica Bioorganica Acta, 2021, 16, 3-9.	0.2	1
200	Fluorine-Containing Pharmaceuticals and the Phenomenon of the Self-Disproportionation of Enantiomers. , 2019, , 321-355.		0
201	Frontispiece: Tailorâ€Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Azaâ€Tryptophan Derivatives. Chemistry - A European Journal, 2021, 27, .	3.3	0