Zheng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4223400/publications.pdf

Version: 2024-02-01

687363 888059 1,808 17 13 17 h-index citations g-index papers 21 21 21 2688 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Region-specific distribution of Olig2-expressing astrocytes in adult mouse brain and spinal cord. Molecular Brain, 2021, 14, 36.	2.6	27
2	A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through InÂVivo Astrocyte-to-Neuron Conversion. Molecular Therapy, 2020, 28, 217-234.	8.2	163
3	Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nature Communications, 2020, 11, 1105.	12.8	123
4	Gluconate suppresses seizure activity in developing brains by inhibiting CLC-3 chloride channels. Molecular Brain, 2019, 12, 50.	2.6	5
5	In Vivo Cell Conversion as aÂNew Cell Therapy. Current Human Cell Research and Applications, 2019, , 169-190.	0.1	0
6	GABAergic deficits and schizophrenia-like behaviors in a mouse model carrying patient-derived neuroligin-2 R215H mutation. Molecular Brain, 2018, 11, 31.	2.6	21
7	Gad67 haploinsufficiency reduces amyloid pathology and rescues olfactory memory deficits in a mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 73.	10.8	24
8	KCC2 downregulation facilitates epileptic seizures. Scientific Reports, 2017, 7, 156.	3.3	80
9	KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 751-756.	7.1	206
10	Effects of 3-aminoglutarate, a "silent―false transmitter for glutamate neurons, on synaptic transmission and epileptiform activity. Neuropharmacology, 2015, 97, 95-103.	4.1	4
11	Activation of extrasynaptic GABAA receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons. Neuroscience Bulletin, 2014, 30, 866-876.	2.9	11
12	InÂVivo Direct Reprogramming of Reactive Glial Cells into Functional Neurons after Brain Injury and in an Alzheimer's Disease Model. Cell Stem Cell, 2014, 14, 188-202.	11.1	687
13	Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's disease model. Nature Communications, 2014, 5, 4159.	12.8	215
14	Regulation of epileptiform activity by two distinct subtypes of extrasynaptic GABAA receptors. Molecular Brain, 2013, 6, 21.	2.6	17
15	Homeostatic Competition between Phasic and Tonic Inhibition. Journal of Biological Chemistry, 2013, 288, 25053-25065.	3.4	24
16	\hat{I}^3 -Aminobutyric Acid Type A (GABAA) Receptor $\hat{I}\pm$ Subunits Play a Direct Role in Synaptic Versus Extrasynaptic Targeting. Journal of Biological Chemistry, 2012, 287, 27417-27430.	3.4	54
17	Protective Effect of Resveratrol against Kainate-induced Temporal Lobe Epilepsy in Rats. Neurochemical Research, 2009, 34, 1393-1400.	3.3	132