Yu-Tzu Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4222813/publications.pdf

Version: 2024-02-01

686830 752256 26 443 13 20 citations h-index g-index papers 27 27 27 621 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Potentially conjugative plasmids harboring Tn6636, a multidrug-resistant and composite mobile element, in Staphylococcus aureus. Journal of Microbiology, Immunology and Infection, 2022, 55, 225-233.	1.5	5
2	Haplotype distribution of SARS-CoV-2 variants in low and high vaccination rate countries during ongoing global COVID-19 pandemic in early 2021. Infection, Genetics and Evolution, 2022, 97, 105164.	1.0	9
3	Staphylococcus taiwanensis sp. nov., isolated from human blood. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	7
4	The extent of molecular variation in novel SARS-CoV-2 after the six-month global spread. Infection, Genetics and Evolution, 2021, 91, 104800.	1.0	5
5	A Possible Role of Insertion Sequence IS1216V in Dissemination of Multidrug-Resistant Elements MESPM1 and MES6272-2 between Enterococcus and ST59 Staphylococcus aureus. Microorganisms, 2020, 8, 1905.	1.6	6
6	Heterogeneity of Molecular Characteristics among Staphylococcus argenteus Clinical Isolates (ST2250, ST2793, ST1223, and ST2198) in Northern Taiwan. Microorganisms, 2020, 8, 1157.	1.6	5
7	Rapid antibiotic susceptibility testing of bacteria from patients' blood via assaying bacterial metabolic response with surface-enhanced Raman spectroscopy. Scientific Reports, 2020, 10, 12538.	1.6	30
8	In Vitro and In Vivo Evaluations of \hat{l}^2 -Lactam/ \hat{l}^2 -Lactamase Mono- and Combined Therapies against Carbapenem-Nonsusceptible Enterobacteriaceae in Taiwan. Microorganisms, 2020, 8, 1981.	1.6	5
9	Long-Term Surveillance of Antibiotic Prescriptions and the Prevalence of Antimicrobial Resistance in Non-Fermenting Gram-Negative Bacilli. Microorganisms, 2020, 8, 397.	1.6	11
10	Distribution of antibiotic resistance genes among Staphylococcus species isolated from ready-to-eat foods. Journal of Food and Drug Analysis, 2019, 27, 841-848.	0.9	28
11	Wide dissemination of SCC fusC in fusidic acid-resistant coagulase-negative staphylococci and implication for its spread to methicillin-resistant staphylococcus aureus in Taiwan. International Journal of Antimicrobial Agents, 2018, 51, 875-880.	1.1	2
12	Clinical characteristics of patients with bacteraemia due to the emergence of mcr-1-harbouring Enterobacteriaceae in humans and pigs in Taiwan. International Journal of Antimicrobial Agents, 2018, 52, 651-657.	1.1	19
13	Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates. Journal of Microbiology, Immunology and Infection, 2017, 50, 46-54.	1.5	23
14	Rapid identification of Streptococcus intermedius by multiplex polymerase chain reaction 1 week before culture positivity in a patient with antibiotic-treated thalamic brain abscess. Journal of Microbiology, Immunology and Infection, 2017, 50, 549-551.	1.5	5
15	Genomic comparison between Staphylococcus aureus GN strains clinically isolated from a familial infection case: IS1272 transposition through a novel inverted repeat-replacing mechanism. PLoS ONE, 2017, 12, e0187288.	1.1	5
16	Distribution of Staphylococcal Cassette Chromosome (SCC)mecElement Types in Fusidic Acid-Resistant Staphylococcus epidermidis and Identification of a Novel SCC7684Element. Antimicrobial Agents and Chemotherapy, 2016, 60, 5006-5009.	1.4	5
17	Novel Structure of Enterococcus faecium-Originated <i>ermB</i> -Positive Tn <i>1546</i> -Like Element in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2016, 60, 6108-6114.	1.4	15
18	Emergence of a small colony variant of vancomycin-intermediate <i>Staphylococcus aureus</i> in a patient with septic arthritis during long-term treatment with daptomycin. Journal of Antimicrobial Chemotherapy, 2016, 71, 1807-1814.	1.3	34

Yu-Tzu Lin

#	Article	IF	CITATION
19	Molecular Evolutionary Pathways toward Two Successful Community-Associated but Multidrug-Resistant ST59 Methicillin-Resistant Staphylococcus aureus Lineages in Taiwan: Dynamic Modes of Mobile Genetic Element Salvages. PLoS ONE, 2016, 11, e0162526.	1.1	19
20	Genotypes and phenotypes of Staphylococcus lugdunensis isolates recovered from bacteremia. Journal of Microbiology, Immunology and Infection, 2015, 48, 397-405.	1.5	17
21	A novel fusidic acid resistance determinant, fusF, in Staphylococcus cohnii. Journal of Antimicrobial Chemotherapy, 2015, 70, 416-419.	1.3	26
22	Skin Commensal Staphylococci May Act as Reservoir for Fusidic Acid Resistance Genes. PLoS ONE, 2015, 10, e0143106.	1.1	28
23	A Novel Staphylococcal Cassette Chromosomal Element, SCC <i>fusC</i> , Carrying <i>fusC</i> and <i>speG</i> in Fusidic Acid-Resistant Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 1224-1227.	1.4	24
24	New Structure of Phage-Related Islands Carrying <i>fusB</i> and a Virulence Gene in Fusidic Acid-Resistant Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 2013, 57, 5737-5739.	1.4	18
25	AmpN-AmpG Operon Is Essential for Expression of L1 and L2 \hat{l}^2 -Lactamases in <i>Stenotrophomonas maltophilia</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 2583-2589.	1.4	32
26	AmpD _I Is Involved in Expression of the Chromosomal L1 and L2 β-Lactamases of <i>Stenotrophomonas maltophilia</i>	1.4	60