M Gail Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4222758/publications.pdf

Version: 2024-02-01

112	3,524	30	54
papers	citations	h-index	g-index
116	116	116	2423
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Accelerating high school students' science career trajectories through non-formal science volunteer programs. International Journal of Science Education, Part B: Communication and Public Engagement, 2023, 13, 28-39.	0.9	4
2	The utility of <scp>3D</scp> , <scp>hapticâ€enabled</scp> , virtual reality technologies for student knowledge gains in the complex biological system of the human heart. Journal of Computer Assisted Learning, 2022, 38, 651-667.	3.3	4
3	The Development and Validation of a Measure of Science Capital, Habitus, and Future Science Interests. Research in Science Education, 2021, 51, 1549-1565.	1.4	16
4	Understanding science career aspirations: Factors predicting future science task value. Journal of Research in Science Teaching, 2021, 58, 937-955.	2.0	20
5	It's about time: perceived barriers to in-service teacher climate change professional development. Environmental Education Research, 2021, 27, 762-778.	1.6	10
6	The Privilege of Low Pay: Informal Educators' Perspectives on Workforce Equity and Diversity. Journal of Museum Education, 2021, 46, 430-440.	0.2	4
7	Evaluation of Educator Self-Efficacy in Informal Science Centers. Journal of Museum Education, 2020, 45, 327-339.	0.2	5
8	Enclothed cognition: putting lab coats to the test. International Journal of Science Education, 2019, 41, 1962-1976.	1.0	4
9	Investigating Potential Relationships Between Adolescents' Cognitive Development and Perceptions of Presence in 3-D, Haptic-Enabled, Virtual Reality Science Instruction. Journal of Science Education and Technology, 2019, 28, 265-284.	2.4	23
10	Female and minority experiences in an astronomy-based science hobby. Cultural Studies of Science Education, 2019, 14, 937-962.	0.9	5
11	Editorial: Gendered Paths into STEM. Disparities Between Females and Males in STEM Over the Life-Span. Frontiers in Psychology, 2019, 10, 2758.	1.1	6
12	Free choice science learning and STEM career choice. International Journal of Science Education, Part B: Communication and Public Engagement, 2019, 9, 29-39.	0.9	10
13	Crosscutting concepts and achievement: Is a sense of size and scale related to achievement in science and mathematics?. Journal of Research in Science Teaching, 2019, 56, 302-321.	2.0	8
14	Teaching Systems Thinking in the Context of the Water Cycle. Research in Science Education, 2019, 49, 137-172.	1.4	37
15	Review of Virtual Reality Hardware Employed in K-20 Science Education. , 2019, , 1-12.		2
16	Review of Virtual Reality Hardware Employed in K-20 Science Education. , 2019, , 1389-1399.		3
17	Next generation crosscutting themes: Factors that contribute to students' understandings of size and scale. Journal of Research in Science Teaching, 2018, 55, 876-900.	2.0	10
18	Characteristics of lifelong science learners: an investigation of STEM hobbyists. International Journal of Science Education, Part B: Communication and Public Engagement, 2018, 8, 53-75.	0.9	15

#	Article	IF	Citations
19	Elementary Teachers' Selection and Use of Visual Models. Journal of Science Education and Technology, 2018, 27, 1-29.	2.4	10
20	Citizen scientists and non-citizen scientist hobbyists: motivation, benefits, and influences. International Journal of Science Education, Part B: Communication and Public Engagement, 2018, 8, 287-306.	0.9	21
21	Science hobbyists: active users of the science-learning ecosystem. International Journal of Science Education, Part B: Communication and Public Engagement, 2017, 7, 161-180.	0.9	18
22	Factors contributing to lifelong science learning: Amateur astronomers and birders. Journal of Research in Science Teaching, 2017, 54, 412-433.	2.0	55
23	Scale and the evolutionarily based approximate number system: an exploratory study. International Journal of Science Education, 2017, 39, 1008-1024.	1.0	2
24	Learning from a distance: high school students' perceptions of virtual presence, motivation, and science identity during a remote microscopy investigation. International Journal of Science Education, 2017, 39, 257-273.	1.0	21
25	Factors Influencing Postsecondary STEM Students' Views of the Public Communication of an Emergent Technology: a Cross-National Study from Five Universities. Research in Science Education, 2017, 47, 1011-1029.	1.4	7
26	Inquiry Into Action: Ecosystems and Animals. Science Scope (Washington, D C), 2017, 041, .	0.1	1
27	The Efficacy of Visuohaptic Simulations in Teaching Concepts of Thermal Energy, Pressure, and Random Motion. Contributions From Science Education Research, 2016, , 73-86.	0.4	1
28	Precollege nanotechnology education: a different kind of thinking. Nanotechnology Reviews, 2015, 4, .	2.6	12
29	Students as Virtual Scientists: An exploration of students' and teachers' perceived realness of a remote electron microscopy investigation. International Journal of Science Education, 2015, 37, 2433-2452.	1.0	21
30	Touching the Stars: Making Astronomy Accessible for Students With Visual Impairments. Science Scope (Washington, D C), 2015, 038, .	0.1	2
31	Science Meets Engineering: Applying the Design Process to Monitor Leatherback Turtle Hatchlings. Science Scope (Washington, D C), 2015, 038, .	0.1	O
32	Where are the Women and Minority Fossil Collectors? A Study of the Development and Characteristics of Science Hobbyists. The Paleontological Society Special Publications, 2014, 13, 106-107.	0.0	1
33	The Efficacy of Haptic Simulations to Teach Students with Visual Impairments about Temperature and Pressure. Journal of Visual Impairment and Blindness, 2014, 108, 55-61.	0.4	17
34	Teaching Self-Efficacy of Science Teachers. , 2014, , 3-15.		17
35	Exploring Pre-Service Teachers' Perceptions of the Risks of Emergent Technologies: Implications for Teaching and Learning. Journal of Nano Education (Print), 2014, 6, 39-49.	0.3	3
36	Students' and Teachers' Application of Surface Area to Volume Relationships. Research in Science Education, 2013, 43, 395-411.	1.4	9

#	Article	IF	CITATIONS
37	Nanotechnology and Nanoscale Science: Educational challenges. International Journal of Science Education, 2013, 35, 1490-1512.	1.0	90
38	The Impact of Microbiology Instruction on Students' Perceptions of Risks Related to Microbial Illness. International Journal of Science Education, Part B: Communication and Public Engagement, 2013, 3, 199-213.	0.9	9
39	Science Professional Learning Communities: Beyond a singular view of teacher professional development. International Journal of Science Education, 2013, 35, 1756-1774.	1.0	35
40	Teachers' Concepts of Spatial Scale: An international comparison. International Journal of Science Education, 2013, 35, 2462-2482.	1.0	14
41	Chinese and US Middle-School Science Teachers' Autonomy, Motivation, and Instructional Practices. International Journal of Science Education, 2013, 35, 1454-1489.	1.0	18
42	Teaching a Multidisciplinary Nanotechnology Laboratory Course to Undergraduate Students. Journal of Nano Education (Print), $2013, 5, 17-26$.	0.3	2
43	Nanoscience for All: Strategies for Teaching Nanoscience to Undergraduate Freshmen Science and Non-Science Majors. Journal of Nano Education (Print), 2013, 5, 70-78.	0.3	0
44	Students' Accuracy of Measurement Estimation: Context, Units, and Logical Thinking. School Science and Mathematics, 2012, 112, 171-178.	0.5	19
45	Differential Use of Elementary Science Kits. International Journal of Science Education, 2012, 34, 2371-2391.	1.0	10
46	Accuracy of Estimations of Measurements by Students with Visual Impairments. Journal of Visual Impairment and Blindness, 2012, 106, 351-355.	0.4	6
47	Conceptualizing Magnification and Scale: The Roles of Spatial Visualization and Logical Thinking. Research in Science Education, 2011, 41, 357-368.	1.4	28
48	Science Instructors' Perceptions of the Risks of Biotechnology: Implications for Science Education. Research in Science Education, 2011, 41, 711-738.	1.4	18
49	Developing a Scientist: A retrospective look. International Journal of Science Education, 2011, 33, 1653-1673.	1.0	39
50	We Scream for Nano Ice Cream. Science Activities, 2011, 48, 107-110.	0.4	1
51	Perceptions and Practices: Biology graduate teaching assistants' framing of a controversial socioscientific issue. International Journal of Science Education, 2011, 33, 1031-1054.	1.0	10
52	Students' Risk Perceptions of Nanotechnology Applications: Implications for science education. International Journal of Science Education, 2010, 32, 1951-1969.	1.0	40
53	Impact of Introductory Nanoscience Course on College Freshmen's Conceptions of Spatial Scale. Journal of Nano Education (Print), 2010, 2, 53-66.	0.3	4
54	Developing a sense of scale: Looking backward. Journal of Research in Science Teaching, 2009, 46, 460-475.	2.0	53

#	Article	IF	CITATIONS
55	Estimating Linear Size and Scale: Body rulers. International Journal of Science Education, 2009, 31, 1495-1509.	1.0	30
56	Concepts of scale held by students with visual impairment. Journal of Research in Science Teaching, 2009, 46, 506-519.	2.0	13
57	Measuring the Impact of Haptic Feedback Using the SOLO Taxonomy. International Journal of Science Education, 2009, 31, 1359-1378.	1.0	36
58	Popular Media in the Biology Classroom: Viewing Popular Science Skeptically. American Biology Teacher, 2009, 71, 332-335.	0.1	3
59	Bacteria Buster: Testing Antibiotic Properties of Silver Nanoparticles. American Biology Teacher, 2009, 71, 231-234.	0.1	5
60	Haptic feedback and students' learning about levers: Unraveling the effect of simulated touch. Computers and Education, 2009, 53, 667-676.	5.1	48
61	Proportional Reasoning Ability and Concepts of Scale: Surface area to volume relationships in science. International Journal of Science Education, 2009, 31, 1231-1247.	1.0	31
62	Creativity, inquiry, or accountability? Scientists' and teachers' perceptions of science education. Science Education, 2008, 92, 1058-1075.	1.8	55
63	Conceptual Representations of Flu and Microbial Illness Held by Students, Teachers, and Medical Professionals. School Science and Mathematics, 2008, 108, 263-278.	0.5	32
64	Is it Live or is it Memorex? Students' Synchronous and Asynchronous Communication with Scientists. International Journal of Science Education, 2008, 30, 495-514.	1.0	13
65	Haptic Feedback in the Instructional Environment and its Relationship to Visual Attention and Learning. Proceedings of the Human Factors and Ergonomics Society, 2008, 52, 638-642.	0.2	0
66	Experienced and Novice Teachers' Concepts of Spatial Scale. International Journal of Science Education, 2008, 30, 409-429.	1.0	53
67	Visualization Without Vision: Students with Visual. , 2008, , 283-294.		5
68	Differences in African-American and European-American students' engagement with nanotechnology experiences: Perceptual position or assessment artifact?. Journal of Research in Science Teaching, 2007, 44, 787-799.	2.0	9
69	Understanding Scale: Powers of Ten. Journal of Science Education and Technology, 2007, 16, 191-202.	2.4	48
70	Pulling Back the Curtain: Uncovering and Changing Students' Perceptions of Scientists. School Science and Mathematics, 2006, 106, 181-190.	0.5	31
71	Haptic augmentation of science instruction: Does touch matter?. Science Education, 2006, 90, 111-123.	1.8	107
72	Conceptual boundaries and distances: Students' and experts' concepts of the scale of scientific phenomena. Journal of Research in Science Teaching, 2006, 43, 282-319.	2.0	100

#	Article	IF	CITATIONS
73	Accuracy of scale conceptions in science: Mental maneuverings across many orders of spatial magnitude. Journal of Research in Science Teaching, 2006, 43, 1061-1085.	2.0	78
74	Visualizing Without Vision at the Microscale: Students With Visual Impairments Explore Cells With Touch. Journal of Science Education and Technology, 2006, 15, 345-351.	2.4	63
75	The impact of haptic augmentation on middle school students' conceptions of the animal cell. Virtual Reality, 2006, 10, 293-305.	4.1	62
76	Haptics in Education: Exploring an Untapped Sensory Modality. Review of Educational Research, 2006, 76, 317-348.	4.3	190
77	More Than Clocks and Calendars: The Construction of Timekeepers by Eleven Kindergarten Children in Mexico and the United States. Journal of Research in Childhood Education, 2005, 19, 223-241.	0.6	3
78	Small Groups and Shared Constructions. , 2005, , 261-279.		4
79	Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students. Science Education, 2004, 88, 55-71.	1.8	33
80	Controlling Choice: Teachers, Students, and Manipulatives in Mathematics Classrooms. School Science and Mathematics, 2004, 104, 16-31.	0.5	18
81	Learning at the nanoscale: The impact of students' use of remote microscopy on concepts of viruses, scale, and microscopy. Journal of Research in Science Teaching, 2003, 40, 303-322.	2.0	97
82	Effects of partner's ability on the achievement and conceptual organization of high-achieving fifth-grade students. Science Education, 2003, 87, 94-111.	1.8	10
83	Relationships Between Inquiryâ€Based Teaching and Physical Science Standardized Test Scores. School Science and Mathematics, 2003, 103, 345-350.	0.5	14
84	Gender differences in students' experiences, interests, and attitudes toward science and scientists. Science Education, 2000, 84, 180-192.	1.8	465
85	Exploring the Development of Conceptual Ecologies: Communities of Concepts Related to Convection and Heat. Journal of Research in Science Teaching, 2000, 37, 139-159.	2.0	43
86	Tool time: Gender and students' use of tools, control, and authority. Journal of Research in Science Teaching, 2000, 37, 760-783.	2.0	47
87	Children's concepts: Tools for transforming science teachers' knowledge. Science Education, 1999, 83, 545-557.	1.8	29
88	Middle Schools are Communities of Many Voices. Middle School Journal, 1999, 31, 42-48.	0.4	0
89	Emerging Results From a Middle School Professional Development School: The McDougle-University of North Carolina Collaborative Inquiry Partnership Groups. Peabody Journal of Education, 1999, 74, 236-253.	0.8	3
90	Gardens or graveyards: Science education reform and school culture. Journal of Research in Science Teaching, 1998, 35, 757-775.	2.0	16

#	Article	IF	CITATIONS
91	Science teachers' conceptual growth within Vygotsky's zone of proximal development. Journal of Research in Science Teaching, 1998, 35, 967-985.	2.0	35
92	An Investigation of African American Students' Mathematical Problem Solving. Journal for Research in Mathematics Education, 1998, 29, 143.	1.0	31
93	An Investigation of African American Students' Mathematical Problem Solving. Journal for Research in Mathematics Education, 1998, 29, 143-163.	1.0	21
94	Gender differences in motivation and strategy use in science: Are girls rote learners?. Journal of Research in Science Teaching, 1996, 33, 393-406.	2.0	98
95	Putting Practice Into Theory: Changes in the Organization of Preservice Teachers' Pedagogical Knowledge. American Educational Research Journal, 1996, 33, 91-117.	1.6	72
96	Hands-On: Science Education Reform. Journal of Teacher Education, 1996, 47, 375-385.	2.0	11
97	Gender differences in motivation and strategy use in science: Are girls rote learners?., 1996, 33, 393.		1
98	Preservice teachers' cognitive frameworks for class management. Teaching and Teacher Education, 1995, 11, 313-330.	1.6	36
99	Performance-Based Assessment in Middle School Science. Middle School Journal, 1994, 25, 35-38.	0.4	2
100	Silent Sixth-Grade Students: Characteristics, Achievement, and Teacher Expectations. Elementary School Journal, 1994, 95, 169-182.	0.9	37
101	The Case of the Disappearing "Peanuts― Science Activities, 1994, 30, 8-10.	0.4	1
102	The concept map as a research and evaluation tool: Further evidence of validity. Journal of Research in Science Teaching, 1994, 31, 91-101.	2.0	247
103	Verbal and nonverbal behavior of ability-grouped dyads. Journal of Research in Science Teaching, 1994, 31, 603-619.	2.0	20
104	Relationship between ability-paired interactions and the development of fifth graders' concepts of balance. Journal of Research in Science Teaching, 1994, 31, 847-856.	2.0	23
105	Action zone theory, target students and science classroom interactions. Journal of Research in Science Teaching, 1990, 27, 651-660.	2.0	21
106	Gender differences in teacher-student interactions in science classrooms. Journal of Research in Science Teaching, 1990, 27, 861-874.	2.0	175
107	Cooperative Learning: Developmentally Appropriate for Middle Level Students. Middle School Journal, 1990, 22, 12-16.	0.4	10
108	Biological Literacy. American Biology Teacher, 1989, 51, 480-481.	0.1	5

#	Article	IF	CITATIONS
109	Gender influences in classroom displays and student-teacher behaviors. Science Education, 1989, 73, 535-545.	1.8	35
110	Factors influencing the entry of women into science and related fields. Science Education, 1988, 72, 127-142.	1.8	27
111	The Next Generation of Science Educators: Museum Volunteers. Journal of Science Teacher Education, 0, , 1-18.	1.4	3
112	Investigating the Impact of Visuohaptic Simulations for Conceptual Understanding in Electricity and Magnetism. , 0, , .		1